Stress in Northern Lushootseed — A Preliminary Analysis

Violet Bianco
University of Victoria

1. INTRODUCTION

With the exception of Demers and Horn's (1978), and Davis's (1984) work on Squamish, the systems of stress assignment in Coast Salish languages have not been studied extensively. In contrast, Interior Salish languages have been the subjects of a number of comprehensive analyses by researchers such as Bates and Carlson (1989) and Czaykowska-Higgins (1993). In this paper I will present a preliminary analysis of stress in Lushootseed, which is the name of both the language and of the people of the Coast Salish group who speak it. Today the language is in a moribund state, with fewer than ten reasonably fluent speakers. Once the primary language of the indigenous people centred around the Seattle area of Washington state, Lushootseed can be divided into at least two dialectal areas, Northern and Southern. According to Hess (1977), it is primarily the phonological differences of stress placement and dissimilation which distinguish the two branches. Hess (1994) has been studying the language for some thirty years and all of my data is drawn from Bates, Hess, and Hilbert's 1994 Lushootseed Dictionary.

This study focuses on the stress system of the Northern dialect. Hess (1977:404) writes that the major stress in Northern Lushootseed words occurs on the first non-schwa of a stem, or, if all the vowels are schwas, on the first schwa. Hess also mentions that there seems to be a "sub-class of lexical suffixes which receive primary stress regardless of preceding vowels." Yet, as we see in (1), there is significant variation in the placement of stress in Lushootseed and it can occur in every available (stressable) position. The indication is that while Lushootseed's stress placement may represent a simpler process than occurs in Northern Lushootseed — A Preliminary Analysis

Violet Bianco
University of Victoria

1. INTRODUCTION

With the exception of Demers and Horn's (1978), and Davis's (1984) work on Squamish, the systems of stress assignment in Coast Salish languages have not been studied extensively. In contrast, Interior Salish languages have been the subjects of a number of comprehensive analyses by researchers such as Bates and Carlson (1989) and Czaykowska-Higgins (1993). In this paper I will present a preliminary analysis of stress in Lushootseed, which is the name of both the language and of the people of the Coast Salish group who speak it. Today the language is in a moribund state, with fewer than ten reasonably fluent speakers. Once the primary language of the indigenous people centred around the Seattle area of Washington state, Lushootseed can be divided into at least two dialectal areas, Northern and Southern. According to Hess (1977), it is primarily the phonological differences of stress placement and dissimilation which distinguish the two branches. Hess (1994) has been studying the language for some thirty years and all of my data is drawn from Bates, Hess, and Hilbert's 1994 Lushootseed Dictionary.

This study focuses on the stress system of the Northern dialect. Hess (1977:404) writes that the major stress in Northern Lushootseed words occurs on the first non-schwa of a stem, or, if all the vowels are schwas, on the first schwa. Hess also mentions that there seems to be a "sub-class of lexical suffixes which receive primary stress regardless of preceding vowels." Yet, as we see in (1), there is significant variation in the placement of stress in Lushootseed and it can occur in every available (stressable) position. The indication is that while Lushootseed's stress placement may represent a simpler process than occurs in

1. INTRODUCTION

With the exception of Demers and Horn's (1978), and Davis's (1984) work on Squamish, the systems of stress assignment in Coast Salish languages have not been studied extensively. In contrast, Interior Salish languages have been the subjects of a number of comprehensive analyses by researchers such as Bates and Carlson (1989) and Czaykowska-Higgins (1993). In this paper I will present a preliminary analysis of stress in Lushootseed, which is the name of both the language and of the people of the Coast Salish group who speak it. Today the language is in a moribund state, with fewer than ten reasonably fluent speakers. Once the primary language of the indigenous people centred around the Seattle area of Washington state, Lushootseed can be divided into at least two dialectal areas, Northern and Southern. According to Hess (1977), it is primarily the phonological differences of stress placement and dissimilation which distinguish the two branches. Hess (1994) has been studying the language for some thirty years and all of my data is drawn from Bates, Hess, and Hilbert's 1994 Lushootseed Dictionary.

This study focuses on the stress system of the Northern dialect. Hess (1977:404) writes that the major stress in Northern Lushootseed words occurs on the first non-schwa of a stem, or, if all the vowels are schwas, on the first schwa. Hess also mentions that there seems to be a "sub-class of lexical suffixes which receive primary stress regardless of preceding vowels." Yet, as we see in (1), there is significant variation in the placement of stress in Lushootseed and it can occur in every available (stressable) position. The indication is that while Lushootseed's stress placement may represent a simpler process than occurs in
Interior Salish language, I will postulate two rules of stress assignment in this investigation. One will be shown to govern foot construction and the location of the heads of these constituent structures, and the other, word stress. My analysis of the placement of stress in Lushootseed will be a demonstration of the interaction of its morphological features with these two rules.

Lushootseed's phonology and morphology are recognizably Salish and I provide a summary of their characteristics in Section 2. In Section 3 I will present the main body of this work, including the data and its analysis; and in Section 4, a brief conclusion.

2. PHONOLOGY and MORPHOLOGY

Lushootseed is like other Salish languages in that it has a large and complex consonantal phonemic inventory, while the vowel inventory is simple.

(2) a. Vowels
 i u
 o a

b. Consonants
 labial coronal velar uvular glottal
 stops & pp t c čkk' k'q q' q"?
 p' ě č č'
 b d d'
 affricates ě K'j K'
 fricative s s' s x x' x' y w
 resonant m n l y w

In Lushootseed words are characterizedly built upon a (potentially) free-standing root in combination with one or more of a variety of affixes, both grammatical and lexical. As well as inflectional and derivational affixes, the language also possesses lexical suffixes common to Salish. All these forms concatenate in complex strings.

Lushootseed makes extensive use of reduplication but for the purposes of this paper I do not examine that data. Nor do I consider secondary stress at this time. Prefixes do not receive primary stress but I will later cite examples which provide evidence that they can affect its placement. Insertion of epenthetic schwas is the only other phonological process relevant to this discussion.

3. DATA and DISCUSSION

Halle and Vergnaud's (1987a,b) metrical framework assumes that a morphological hierarchy of stress prominence can be represented on a grid. The bottom line (0) of the grid is marked with an asterisk for each stressable element in the word, and constituent structures (bracketed) are erected upon them. Above, on line 1 (also called the foot level), the head of a constituent is selected according to a foot rule. A third (word) level, line 2, can be employed to situate the head of a constituent formed from the feet on line 1. A further assumption of this theory is that prominence and metrical structure are not entirely co-dependent. Thus, additional specifications are allowed to precede regular stress assignment rules. The three parameters that govern constituent structures refer to whether heads are terminal [HT], binary or ternary [BND], and (R)ight or (L)eft.

3.1 Leftward Stress Placement

There is one primary stress per word in Lushootseed and, as Hess (1977) reports, it is assigned to the majority of the words in the Lushootseed lexicon in a regular and obvious pattern. The examples in (3) and (4) demonstrate typical leftward stress placement for monomorphic words which have the shape CVCVC or CaCaC.

(3)
 a. CāCaC
 p'ēg'ēd s ēxg'ēd
 nom. ēblackberry
 b. ēx'ēlotēb ēwhite man
 c. ēp'ēčab ēbobcat
 d. ēkēbaqēb ēChemakum (place name)
 e. ēblēswēb ēbolling, bubbling up

(4)
 CVCVC
 a. ētitūt ēsleep
 b. ēq'ēqēd ēyell
 c. ēādārūt ēmorning
 d. ēkādayu? ērat
 e. ēsātāgīx ēcat bird

In the examples of roots in (3) and (4), stress always falls on the first syllable, indicating the existence of a rule that creates left-headed unbounded feet, resulting in assignment of stress to the leftmost syllable.
3.2 Strong versus Weak Roots

In this section we will examine two sets of polymorphemic forms, one of which does not bear leftmost stress. The data in (7) and (8) illustrates the two stress patterns which occur when different types of roots are concatenated with the same suffixes. Additionally, the roots in (7a) and (7d) are repeated with a different suffix in (8a) and (8d). The proposed foot rule accounts for the placement of stress only in the examples in (4) which contain full vowels. The facts in the examples containing schwas (3) are later seen to be the result of a word-stress rule (9) which also selects heads in a leftmost position. The application of the word-stress rule is vacuous in the instance of the monomorphemic forms in (4).

3.2 Strong versus Weak Roots

In this section we will examine two sets of polymorphemic forms, one of which does not bear leftmost stress. The data in (7) and (8) illustrates the two stress patterns which occur when different types of roots are concatenated with the same suffixes. Additionally, the roots in (7a) and (7d) are repeated with a different suffix in (8a) and (8d).

(7) a. √7ab =a pledges
reach with hands
reach =hand
b. √7dp =a pledges
? =hand
glove, mitten

c. √7h =a pledges
two =hand
the one who

d. √7y =a pledges
both =hand
both hands

e. √7fa =a pledges
right =hand
right hand

f. √7abx =a pledges
knuckle (?) =hand

(8) a. √7ab =a pledges
reach =hand
reach with hands
go back and forth
b. √7h =a pledges
make =hand
be married
glove, mitten

c. √7h =a pledges
two =hand
the one who

In the a, b, and c sets of (7) and (8) stress is assigned as far to the left as possible, as we would expect. These examples contrast with the d, e, and f sets which are not stressed on the root, but rather, to right, on the suffix. This apparent contradiction can be explained simply if we distinguish two classes of roots which affect the application of the LFR differently. The difference between the two types of roots is clearly reflected in their phonetic shapes: both a, b, and c sets contain full, non-reduced vowels and the d, e, and f sets, only schwas. We can define strong roots as those with the shape CVCX, which attract stress to the expected leftmost position of a word. Those roots of the shape CACX are the weak roots and do not appear to bear stress when combined with a suffix.

The motivation for this analysis lies in the assumption that the schwas of CAC roots are not present in their underlying representations but are the result of an epenthesis rule (VINS). Kinkade (to appear a,b) and others also assumed that schwas are not underlying in Salish languages. Czaykowska-Higgins (1993), for instance, argues for this hypothesis in Moses Columbian (Cm):

...The principal difference between strong and weak roots in Cm lies in their underlying representations: strong roots have [i], [u], or [a] vowels which in Cm are unpredictable and therefore underlying, while weak roots have a surface [a], which in Cm is predictable and epenthetic. As a consequence of this underlying difference, strong roots are always stressed on the first cycle, whereas weak roots are not.

If schwa is a member of the phonemic inventory of Lushootseed, I assume that its distribution is limited to affixes and a few classes of morphemes such as the independent pronouns, 'ead' and 'af' you'. Therefore, given the analyses of other Salish languages, I assume that schwas in Lushootseed are epenthetic and not underlying. At this time I propose no further generalization regarding the predictability of epenthesis sites for Lushootseed.

Since weak roots contain no underlying vowels, they have no potentially stressable elements upon which the LFR can act. The placement of stress must, therefore, be achieved via the second rule integral to this analysis, a word stress rule which is ordered "after" epenthesis. Further motivation for the existence of this rule is forthcoming (when later derivations construct two unbounded feet on line 1 as the result of two applications of the LFR). Like the foot rule, the word stress rule also assigns leftmost stress.

(9) Lushootseed Word Rule (LWR)

In the derivation (10) demonstrates application of the word rule to yield stress on the first schwa of monomorphemic weak roots in Lushootseed.

(10) Cycle 1
LFR
LWR

<table>
<thead>
<tr>
<th>Cycle 1</th>
<th>LFR</th>
<th>LWR</th>
</tr>
</thead>
<tbody>
<tr>
<td>CACCaC</td>
<td>bålawåb</td>
<td>a</td>
</tr>
<tr>
<td>LFR</td>
<td>n/a</td>
<td>(no stressable elements)</td>
</tr>
<tr>
<td>VINS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LFR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>line 2</td>
<td></td>
<td>(no foot - LFR has not applied)</td>
</tr>
</tbody>
</table>

In the a, b, and c sets of (7) and (8) stress is assigned as far to the left as possible, as we would expect. These examples contrast with the d, e, and f sets which are not stressed on the root, but rather, to right, on the suffix. This apparent contradiction can be explained simply if we distinguish two classes of roots which affect the application of the LFR differently. The difference between the two types of roots is clearly reflected in their phonetic shapes: both a, b, and c sets contain full, non-reduced vowels and the d, e, and f sets, only schwas. We can define strong roots as those with the shape CVCX, which attract stress to the expected leftmost position of a word. Those roots of the shape CACX are the weak roots and do not appear to bear stress when combined with a suffix.

The motivation for this analysis lies in the assumption that the schwas of CAC roots are not present in their underlying representations but are the result of an epenthesis rule (VINS). Kinkade (to appear a,b) and others also assumed that schwas are not underlying in Salish languages. Czaykowska-Higgins (1993), for instance, argues for this hypothesis in Moses Columbian (Cm):

...The principal difference between strong and weak roots in Cm lies in their underlying representations: strong roots have [i], [u], or [a] vowels which in Cm are unpredictable and therefore underlying, while weak roots have a surface [a], which in Cm is predictable and epenthetic. As a consequence of this underlying difference, strong roots are always stressed on the first cycle, whereas weak roots are not.
The epenthesis rule VINS must be ordered after the application of the LFR and before the LWR in order to constrain the assignment of stress to a reduced segment.

Now we turn to examples of derivations of both strong and weak roots with suffixes. We can assume that the LFR applies cyclically to ensure that it does apply at least once to strong roots before applying to the suffixes, which for now I will label as R. However, in Lushootseed this assumption is not crucial since, in any case, the root would receive stress because of the leftward placement predicted by the LFR. The LWR applies only vacuously in (12).

(11) a. Cycle 1 LFR
line 1 (*)
line 0 (*)
Cycle 2 LFR
line 1 (*)
line 0 (*)
Line 3 LFR
line 1 (*)
line 0 (*)
noncyclic LWR
line 2 (*)
line 1 (*)
Other rules [a] many things [tsg*a]ab put face in water to drink

Presumably the [a] which surfaces from the suffix =ab in (11b) is the result of vowel reduction in an unstressed environment, a process common in Salish languages.

We see how the LWR applies only vacuously to (12a), a word containing a weak root and only one suffix. The root possesses no stressable element over which to construct a foot in the first cycle and so the suffix is stressed by default. The LWR is necessary however, in order to complete the derivations of the examples of strong roots (11), and weak roots which have more than one suffix (12b). In these cases more than one foot is constructed on line 1. It is also apparent from the (b) examples that the addition of more suffixes does not affect the placement of stress at all. Thus, in (11) and (12), using two simple rules to govern foot and word stress assignment, we have accounted for the distinction between CVC (strong) and CVC (weak) roots. The classification of strong and weak roots has been illustrated by the addition of suffixes belonging to the R class.

In Section 3.4 below I introduce a second class of Lushootseed suffixes, and we will observe how the rules apply to them as they interact with each of the two root types. Czaykowska-Higgins (1993) cites the presence of recessive and dominant morphemes in Cm and notes that the stress system of this language is typologically very similar to Indo-European morphological stress systems. It will become clear that the suffixes of Lushootseed can also be so categorized.

3.3 Cyclicity and Stress Erasure

As we saw in derivations above, the notion of the cycle is necessary to ensure stress on the strong roots. Within Halle and Vergnaud’s (1987a,b) metrical framework, the essential distinction between recessive (R) and dominant (D) morphemes is the ability of the (D) suffixes to trigger cyclic application of particular stress rules. By their account non-cyclic (recessive) items cannot affect previous stress assignment by attracting it to themselves. The addition of a dominant suffix however creates a domain for cyclic stress rules to reapply. Included in this theory is the assumption that a convention exists which first erases previously assigned stress so that new feet are constructed over the entire word. By this Stress Erasure Convention (SEC), stress deletion (STRDEL) occurs only upon affixation of a dominant morpheme and precedes all other rule applications.

Clearly, the derivations in Section 3.2 depart from Halle and Vergnaud (1987a,b) to the extent that, in Lushootseed, both recessive and dominant suffixes are assumed to trigger cyclicity. The reason for this assumption is that my data does not show that R suffixes must be noncyclic, only that they can be. For example, if we reanalyze the R suffixes of (11b) and (12b) as noncyclic, we achieve the same stress results as demonstrated in (13).
3.4 Recessive versus Dominant Suffixes

To demonstrate the distinctive properties of the two classes of suffixes it is necessary to look at examples of each with the same strong root. The data shows that D or R suffixes will (almost) always be assigned stress when affixed to weak roots. In the weak root cases the roots, having no full vowels, are skipped over and stress falls predictably on the first suffix to the right. Stress assignment to first (leftmost) available position is illustrated in (14).

(14)
<table>
<thead>
<tr>
<th>Suffix</th>
<th>Stress Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>⟨bk⟩</td>
<td>=ɑːl</td>
</tr>
<tr>
<td>=ɑːl?</td>
<td>place where =wet ink</td>
</tr>
<tr>
<td>=hand</td>
<td>space between fingers</td>
</tr>
</tbody>
</table>

However, when we look at data involving strong roots, we see a departure in some cases from the usual leftward placement. When we compare the stress assignment in (15) and (16), which both contain CVC roots, another pattern emerges. It appears that the D suffixes possess properties not characteristic of the R class: D suffixes are stressed even when affixed to strong roots.

(15)
<table>
<thead>
<tr>
<th>Suffix</th>
<th>Stress Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>⟨lil⟩</td>
<td>=ɑːd</td>
</tr>
<tr>
<td>=ɑːd</td>
<td>different =language</td>
</tr>
<tr>
<td>=əkl</td>
<td>foreign language</td>
</tr>
<tr>
<td>=bik</td>
<td>foreigners</td>
</tr>
<tr>
<td>falledown=creative activity</td>
<td>fell by knocking down</td>
</tr>
<tr>
<td>falledown=fell by knocking down</td>
<td>brush off bottom</td>
</tr>
</tbody>
</table>

(16)
<table>
<thead>
<tr>
<th>Suffix</th>
<th>Stress Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>⟨lil⟩</td>
<td>=ɛːd</td>
</tr>
<tr>
<td>=ɛːd</td>
<td>different =language</td>
</tr>
<tr>
<td>=ɛːk</td>
<td>foreign language</td>
</tr>
<tr>
<td>=bik</td>
<td>foreigners</td>
</tr>
<tr>
<td>falledown=creative activity</td>
<td>fell by knocking down</td>
</tr>
<tr>
<td>falledown=fell by knocking down</td>
<td>brush off bottom</td>
</tr>
</tbody>
</table>

Other researchers, such as Melvold (1987) have also argued that although the SEC predicts that R suffixes must be noncyclic, in fact, cyclicity and stress erasure may be independent. I will demonstrate that the differences between D and R suffixes do not need to involve differences in cyclicity but instead the R suffixes are treated as noncyclic they act as a single unit.

Note that in (13b) the vacuous application of the LWR is identical to that of (12a) because when the R suffixes are treated as noncyclic they act as a single unit.

3.5 Extrametricality

Now, with some evidence to motivate a distinction between the classes of R and D suffixes, I claim that this difference lies in a property of the dominant morphemes that allows stress to skip over a strong root and be assigned on the suffix. Extrametricality is the second diacritic property necessary to this analysis, after stress erasure (dominance). Liberman and Prince (1977:293) first employ the concept of an extrametrical syllable: "it simply does not take part in the metrical calculation induced by the ESR." (English Stress Rule). In later literature extrametricality is cited as a feature which possesses a property characterized by a constituent's ability to render another element invisible to ordinary stress assignment rules. The concept is a powerful one and may seem arbitrary but it has been discussed and acknowledged by such researchers as Hayes (1982), Archangeli (1984) and Halle and Vergnaud (1987a). However, extrametricality is constrained in two ways: the item rendered extrametrical must be in an edgemost position in the word, and it must be adjacent to the extrametricality assigning morpheme. In Czaykowska-Higgins' (1993) analysis of Cm a subset of strong and weak roots is lexically marked to enable them to assign extrametricality to a suffix to their immediate right. In Lushootseed extrametricality assignment is a property of a class of suffixes rather than roots, and assignment is to the left onto the word's root. Extrametricality is formalized in (17).

(17) Extrametricality Assignment

Root - Dominant Suffix -<Root>- Dominant Suffix ' '< >= extrametricality

In (18) weak roots cannot receive stress because they contain no stressable elements in the cyclic portion of the derivation. Therefore, extrametricality assignment is vacuous.

(18)
<table>
<thead>
<tr>
<th>Cycle</th>
<th>Stress Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>⟨g⟩od =ɑp</td>
</tr>
<tr>
<td>=ɑp</td>
<td>foreign language</td>
</tr>
<tr>
<td>=bik</td>
<td>foreigners</td>
</tr>
<tr>
<td>fell by knocking down</td>
<td>brush off bottom</td>
</tr>
<tr>
<td>2</td>
<td>⟨g⟩od =ɑp</td>
</tr>
<tr>
<td>=ɑp</td>
<td>foreign language</td>
</tr>
<tr>
<td>=bik</td>
<td>foreigners</td>
</tr>
<tr>
<td>fell by knocking down</td>
<td>brush off bottom</td>
</tr>
</tbody>
</table>

I suggest that the different patterns seen in the data above can be attributed to the fact that the stressed suffixes in (16) are dominant, and that this class is, in some way, able to attract stress away from the predicted leftmost full vowel in the root.

Other researchers, such as Melvold (1987) have also argued that although the SEC predicts that R suffixes must be noncyclic, in fact, cyclicity and stress erasure may be independent. I will demonstrate that the differences between D and R suffixes do not need to involve differences in cyclicity but instead the R suffixes are treated as noncyclic they act as a single unit.
The application of extrametricality with strong roots is shown in the derivation in (19).

(19)
\[\text{StRt} - D \]
\[\text{} \]
\[\text{pix}^* \quad =\delta p \]
\[\text{brush off} \quad =\text{bottom} \]

We see that according to the SEC, the addition of the dominant suffix \(=\text{ap} \) triggers deletion of the previous stress assigned to the root in the first cycle. The suffix also assigns extrametricality to the root so that the LFR can no longer apply to that morpheme. The affixation of subsequent R suffixes does not affect this pattern and the LWR applies as shown in (20). Since stress deletion is not triggered by R suffixes, the stress remains on the D suffix. I have suppressed the epenthesis of \(\text{a} \) in (20a).

(20)
a.
\[\text{StRt} - D - R \]
\[\text{Aa\'ll?} \quad =\text{ak}^* \quad =\text{bit}^* \]
\[\text{foreign=}\text{group} =\text{cluster} \]
\[\text{change=}\text{pair=}\text{lex ink=}\text{clothe} =\text{be} \]
\[\text{involved in doing} \]

b.
\[\text{StRt} - D - R - R \]
\[\text{Aa\'ll?} \quad =\text{ak}^* \quad =\text{bit}^* \]
\[\text{foreign=}\text{group} =\text{cluster} \]
\[\text{change=}\text{pair=}\text{lex ink=}\text{clothe} =\text{be} \]

The examples in (21) show patterns of a strong root with two suffixes, in which a D suffix is in the rightmost position. These patterns are hypothetical since I have found no data to illustrate them, but they do seem possible and therefore, I propose the following predicted sites for placement of stress.

(21)
a.
\[\text{StRt} - D_1 - D_2 \]

b.
\[\text{StRt} - R - D \]

In (21a) I would predict that \(D_2 \) would trigger stress erasure on \(D_1 \), but that extrametricality assigned to the root by \(D_1 \) would remain intact. Therefore, stress would fall on \(D_1 \). The example in (21b) shows a R suffix adjacent to the root. Since R suffixes are unable to assign extrametricality, and the D suffix is not in position to do so, I would expect stress to remain on the root. Derivations for these patterns follow in (22).

(22)
a.
\[\text{StRt} - D_1 - D_2 \]

b.
\[\text{StRt} - R - D \]
When we look at roots which bear prefixes as well as suffixes, we find further motivation for the feature of extrametricality in Lushootseed. It appears that although prefixes never carry stress themselves, they do play a role in stress assignment when affixed to strong roots which have a D suffix. Compare, for instance the data in (23) and (24). The D suffixes have been predictably stressed in (23) because of extrametricality. However, when roots carry prefixes, as in (24), they attract stress in the usual leftward direction.

(23)

<table>
<thead>
<tr>
<th>Cycle 1</th>
<th>Cycle 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>line 1</td>
<td>*</td>
</tr>
<tr>
<td>line 0</td>
<td>*</td>
</tr>
<tr>
<td>STRDEL</td>
<td>n/a</td>
</tr>
<tr>
<td>LFR</td>
<td>n/a</td>
</tr>
<tr>
<td>line 2</td>
<td>*</td>
</tr>
<tr>
<td>line 1</td>
<td>*</td>
</tr>
</tbody>
</table>

3.6 Roots with Prefixes

When we look at roots which bear prefixes as well as suffixes, we find further motivation for the feature of extrametricality in Lushootseed. It appears that although prefixes never carry stress themselves, they do play a role in stress assignment when affixed to strong roots which have a D suffix. Compare, for instance the data in (23) and (24). The D suffixes have been predictably stressed in (23) because of extrametricality. However, when roots carry prefixes, as in (24), they attract stress in the usual leftward direction.

(24)

<table>
<thead>
<tr>
<th>Cycle 1</th>
<th>Cycle 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>line 1</td>
<td>*</td>
</tr>
<tr>
<td>line 0</td>
<td>*</td>
</tr>
<tr>
<td>STRDEL</td>
<td>n/a</td>
</tr>
<tr>
<td>LFR</td>
<td>n/a</td>
</tr>
<tr>
<td>line 2</td>
<td>*</td>
</tr>
<tr>
<td>line 1</td>
<td>*</td>
</tr>
</tbody>
</table>

3.7 Compound Suffixes

There is one final stress pattern to examine in Lushootseed. In this pattern a strong root is affixed by two R suffixes and the leftmost suffix bears primary word stress. We would expect stress to be assigned to the root in these cases, since R suffixes cannot trigger stress deletion or assign extrametricality. Compare the following data sets (26) to (29), wherein (26) and (28) represent the usual pattern of leftmost stress; and (27) and (29), the apparent exceptions. In (26) the lexical linking element =al and the lexical suffix =g'if are R suffixes, as evidenced by their never being stressed when affixed to a strong root. This is true of =al whether it is the sole suffix or the first in a string. However, the behavior of =al in (27), when it is followed by the R suffix =g'if, is that of a D suffix: stress falls on the first suffix instead of the strong root. The same alternation in patterns is demonstrated in the data sets (28) with (29).

(26)

<table>
<thead>
<tr>
<th>Cycle 1</th>
<th>Cycle 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>line 1</td>
<td>*</td>
</tr>
<tr>
<td>line 0</td>
<td>*</td>
</tr>
<tr>
<td>STRDEL</td>
<td>n/a</td>
</tr>
<tr>
<td>LFR</td>
<td>n/a</td>
</tr>
<tr>
<td>line 2</td>
<td>*</td>
</tr>
<tr>
<td>line 1</td>
<td>*</td>
</tr>
</tbody>
</table>

In the following derivation (25), the D suffix is unable to assign the expected feature of extrametricality because the root is no longer in an edgemost position. The condition of peripherality ensures that only material at the edge of a domain may be rendered extrametrical. The presence of a prefix puts the root in a medial position and the root is unavailable to undergo the application of the LFR and to receive stress. The prefix is represented as nycyclic and does not trigger the LFR, so that it may not be stressed itself.

(25)
The derivation in (31) demonstrates application of Lushootseed stress rules on a compound D suffix.

I propose that the explanation for the different patterns in the examples above lies in assuming that there are compound suffixes in Lushootseed. The examples in (26) and (28) show affixal strings composed of individually recessive suffixes, demonstrated by the fact that stress falls on the roots. However, in some instances, such as (27) and (29), the R suffixes combine to create compound suffixes which are single units and which behave as D suffixes in the process of stress assignment. That is, they can attract stress away from strong roots, apparently capable of erasing previous stress and assigning extrametricality to the strong element. When (28) and (29), then the compound is shown to act like a D suffix. I assume that a compounding rule applies before the item is affixed to roots.

The data in the (a) examples of (32) and (33) shows two R suffixes combining to form a D suffix. The resultant compound erases the stress assigned to the strong root in Cycle 1 of the LFR. Then, the D suffix assigns extrametricality to the root so that it is no longer available to subsequent applications of the stress rule. Thus, the D compound suffix is stressed as the next leftmost syllable in the word. The following derivations of (32b, 33b) illustrate the variability of stress when a prefix such as the nominalizer, s- is added to the root morpheme. Note that in (34b) the D compound suffix, although it cannot assign extrametricality to the root because of the requirement that elements which are assigned extrametricality be edgemost in a word. Although the compound is a D suffix, the root is now in a medial position after prefixation. Therefore, the root is not available for extrametrical assignment by the suffix and stress remains on the root. The examples in (32) and (33) illustrate this alternation.

Apart from the slight semantic shifts in Lushootseed, as illustrated above, there is a parallel with English, among other Indo-European languages regarding the alternation in stress patterns that arise as a result of compounding. Chomsky and Halle (1968) discuss SPE’s Compound Stress Rule to explain the distribution of stress in examples like ‘bluebird’ and ‘blue bird.’ Although the pair certainly express related concepts, the individual items do have different meanings and exactly opposite stress assignment.

To further motivate this analysis, we see that when affixed to a prefixed root, the compound suffixes behave like their monomorphemic counterparts. They do not assign extrametricality to the root because of the requirement that elements which are assigned extrametricality be edgemost in a word. Although the compound is a D suffix, the root is now in a medial position after prefixation. Therefore, the root is not available for extrametrical assignment by the suffix and stress remains on the root. The examples in (32) and (33) illustrate this alternation.
3.7 Exceptional Data

Although the above discussion accounts for the vast majority of cases of stress assignment in Lushootseed, there are items that are problematic and examples exist which defy analysis within this framework. For example, =ucid is a R suffix and on its own does not usually bear stress when affixed to a (strong) root containing a full vowel. However, the item in (36d) contradicts this pattern.

(35)

a. StRt - R
 ə'hiy =ucid
 ə'make = eat
 finish eating
b. ə'fi= = eat
 ə'first = eat first
c. ə'ai= = language
 ə'foreign =language
 foreign language
d. ə'ài= =ucid
 ə'other side =mouth
 other side of canoe

In one interesting example of these exceptional items, a Lushootseed word is glossed differently for the Northern and Southern dialects (NL, SL), sharing only a part of the semantics.

(36)

di7 =ucid
a. NL = the other side of a body of water
b. SL = other side of path or road

Given that, according to Hess (1977), the stress patterns of the two dialects are often mirror images, these homophones may indicate a borrowing of lexical items with stress intact. According to Hess (1991:3), the roots di7 and ɬil are similar to a small class of roots in Lushootseed which must be bound to a lexical suffix. This class of bound roots includes two other strong roots, ?ac and ?udag. I do not have enough data to state anything conclusively but some examples of these roots with prefixes are not stressed as this analysis predicts. Therefore I assume that if they are exceptional in that they are bound morphemes, it is also possible that they are idiosyncratic regarding stress. I have no explanation for these exceptions, examples of which in (37) display this irregular stress pattern.

(37)

a. s'ɬil = ál = igʷ'ed whole side
b. xʷ s'ɬil = ál'gʷ'ab buttocks

Finally, we observe that any theory of stress may inevitably have to acknowledge some stipulations or encoding based on semantic information. Within a metrical grid theory these idiosyncratic items are defined as inherently stressed or lexically-accented. In some cases in Lushootseed they are the result of a root having two subtly distinguished meanings. Combined with the same suffix these roots yield two, related, but distinct concepts. The example in (38) demonstrates this alternation of stress, one example of which must be necessarily be an exception to my hypothesis.

(38)

Wk Rt - R
a. ʃyal = əcî?
 ʃpair = hand, forearm
 [yâucid]
glove, mitten
b. ʃyal = əcî?
 ʃbooth = hand, forearm
 [yâcli?]
 both hands

In other cases, the word with the unpredictable stress pattern has a metaphorical meaning as in the b. examples of (39) and (40).

(39)

Str Rt - R
a. ʃhiy =ucid
 ʃmake = eat, mouth
 [hiyucid]
 finish eating
b. ʃhuycid]
 whitefish (... when he became a fish his mouth stayed small)

(40)

Str Rt - R
a. [f?itabac] near side
b. [f?itabac] Saturday (on the near side of the Sacred Day)

4. CONCLUSION

Although stress is assigned primarily in a leftward direction in Lushootseed, this analysis has
accounted for the other varieties of other patterns found in the language. These are summarized in (41).

(41)

a. Monomorphemic Roots

<table>
<thead>
<tr>
<th>CVCX</th>
<th>CVCVX</th>
</tr>
</thead>
<tbody>
<tr>
<td>thlb</td>
<td>bllawab</td>
</tr>
</tbody>
</table>

b. Weak Roots

<table>
<thead>
<tr>
<th>WkRt - ŋ</th>
<th>WkRt - ŋ</th>
<th>ō</th>
<th>ō</th>
<th>ō</th>
</tr>
</thead>
<tbody>
<tr>
<td>q'ap-äd</td>
<td>sal-ás-qid</td>
<td>cooked fish heads</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dag*-dilap</td>
<td>pants</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bāc-dil-ap</td>
<td>anchor with canoe pole</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

c. Strong Roots

<table>
<thead>
<tr>
<th>StRt - ŋ</th>
<th>StRt - ŋ</th>
<th>ō</th>
<th>ō</th>
<th>ō</th>
</tr>
</thead>
<tbody>
<tr>
<td>g*-dild</td>
<td>čt-łabac</td>
<td>leap</td>
<td>Saturday</td>
<td></td>
</tr>
<tr>
<td>tą*-us-ab</td>
<td>put face in water</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hud-dil-g*ł</td>
<td>steamboat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p*ł-łułubid</td>
<td>broad shoulders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ʔu ał-łat</td>
<td>travelling far</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lətł-łk*-bix*</td>
<td>foreigners</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In Lushootseed two classes each of roots and suffixes interact in a metrical theory which constructs constituents over morphemes and erects their heads on a grid. A morphophonemic interface yields the stress patterns above through the application of two simple rules and recognition of the distinctive properties of the four categories of morphemes.

The rules, LFR and LWR locate the heads of constituents at the foot and word levels, respectively, to ensure leftward stress placement. This analysis recognizes the classification of strong versus weak roots which is justified by the inability of the weak roots to carry stress. The roots are distinguished by whether they contain full vowels (strong) or only schwas (weak). Suffixes are characterized by whether or not they can trigger stress erasure and extrametricality. This latter property renders an adjacent strong root invisible to the application of the LFR so that stress is placed on the suffix.

Some compounds formed from two recessive suffixes are shown to act like dominant suffixes for the purposes of stress placement, and evidence for both is provided by affixing them to roots with prefixes. Finally, some apparent exceptions to this hypothesis may be explained by lexical accent indicating semantic differences and borrowing from neighbouring languages. Perhaps an analysis of stress in SL might resolve more of these problematic items, and establish a body of work around which a general theory of stress assignment in Coast Salish languages can be built.

REFERENCES

