
A two-level implementation for Lushootseed morphology

Deryle Lonsdale
B YU Linguistics Department

This paper describes the implementation of a computer system that processes
Lushootseed word forms. Built on the two-level model and leveraging finite­
state technology~ the system is able both to parse surface forms to arrive at the
underlying morphemic decomposition, and to generate surface forms given such
a representation. Components of the system are discussed including the lexicon
architecture, rule formulation and specification, and the word-structure gram­
mar. Issues relevant to processing Lushootseed are discussed including redupli­
cation~ allomorphic variation, inflectional and derivational affixation, and mor­
phophonemic alternations.

1 Introduction

This paper presents a computer system that performs morphological processing for
Lushootseed, a Salishan language. As background, various aspects of the language's
morphology are first surveyed. Then the underlying two-level approach is discussed and
related to morphological properties of the language. The development of associated
knowledge sources and their incorporation into the model is then described. Mention is
made of particularly interesting linguistic issues such as reduplication, allomorphic
variation, inflectional and derivational affixation, and morphophonemics.

The system's current level of functionality is then discussed. Examples are given
that illustrate how the system operates, the types of results it obtains, and its current
coverage. Other possible applications are then mentioned, plans for further development
of the system are sketched, and future applications are suggested.

2 Lushootseed

This section gives a brief overview of relevant aspects of the Lushootseed
language, focusing particularly on its morphology. Other aspects relevant to this paper are
also touched on. The information has been gathered from the valuable and excellent
grammars, readers, and dictionaries that are familiar to Lushootseed students and
researchers (Hess 1976; Hess and Hilbert. 1977; Bates, Hess, and Hilbert. 1994; Hess
1995; Bierwert 1996; Hess 1998). Without these resources this work would not be
possible.

203

2.1 Morphology

Lushootseed (formerly known as Puget Salish) is a Central Coast Salish language
whose traditional area ranges from Puget Sound westward to the Cascades. It is a
language with a rich morphology, a property it shares with other Salish languages. Largely
considered a polysynthetic language, its morphemes are for the most part distinctive, with
almost no overlap in function (such as, for example the English +s which is a subject
marker for verbs, a pluralizer for nouns, and a genetive marker).

In spite of its overall morphological richness, the language's basic system of roots
is relatively simple; almost all roots are monosyllabic or disyllabic. Derivational
morphology is very common, and transderivationality is pervasive in the language. Most
roots can take any inflection (e.g. past tense can occur on nouns and adjectives).

Affixation takes several fonns. Prefixation is primarily used for aspect, tense,
nominalization, and modality. Suffixation is used to signal transitivity, causativity, voice
(active/passive/middle), some aspect, reflexivity/reciprocity, and clause-related
subject/object marking. Most of the inflectional morphology involves suffixation.
Compounding is not common, though some compounds with relatively high frequency do
exist. Incorporation is quite frequent.

Lushootseed is rich in reduplication, which is almost exclusively partial
reduplication. It is possible on any part-of-speech category, and there are at least seven
different basic types of reduplication: diminutive, distributive, out-of-control, counting
people, particularizing, augmentative, and collective.

Lushootseed also has lexical suffixes, a special class of affix that is present in most
Salish languages. Lexical suffixes are bound morphemes that have lexical referents. Most
commonly they refer to nominal concepts (body parts, geographical entities, common
artifacts in daily life, etc.) Around 100 lexical suffixes have been identified for
. Lushootseed.

Figure 1 gives several Lushootseed words that all derive from the same root
morpheme. They involve various processes including prefixation, suffixation, and
reduplication.

2.2 Other linguistic aspects

Though this paper focuses on morphology, aspects of other areas of linguistics are
important to the topic discussed. A few of these relevant facts are mentioned next.

The language has various dialects including Skagit (and Nooksack), Snohomish,
Sauk-Suiattle, and Skykomish (the northern dialects), and Snoqualmie, Suquamish,
Duwamish, Muckleshoot (the southern dialects).

Lushootseed phonetics involves a rich consonantal system but relatiyely few
vowels; the entire vocalic inventory involves: a (low), ~ (mid), and i, u (high). Consonants
include: glides and glottals (w, VI, y, y, h, ?), plain stops (p, t, k, q) with associated variants
involving voicing (b, d, g), glottalization (p, t,](, V, and labialization (kW,](W, gW, qW, qW),
affricates (c, C, c, ~, d\ J, ~), unvoiced fricatives (s, 5, xW, X, i W, t), and lateral resonants
(1, I).

The orthography involves a (rough) I-to-l sound/symbol correspondence, and was

204

gW;;)d
gW;;)dil
gW;;)dtilxw
gWddis
S;;)xW gW;;)dil
S;;)xW gWigw;;)dil
gWigw;;)dil
sgWigWddil
sgW igW ;;)ilal?tx W
gW;;)dgWddil
gWaadil

gwEd
gwEdil
gwEdi1 txW
gwEdis
sExWgWEdil
sExWgWigWEdil
gWigWEdil
sgWigWEdil
sgWigWEdilal?txW
gWEdgwEdil
gWaadil

seated
sit down
seat someone, marry
sit next to someone
chair
little chair
sit briefly
brief sitting
outhouse
sitting around
people sitting around

Figure 1: Example of morphological complexity showing various fonns derived from the
same root.·· The first column shows the words in traditional orthography, the middle column
shows ASCII equivalents used by the program, and the last column shows English glosses.

standardized by Thorn Hess in the 1960's. It is largely based on the International Phonetic
Alphabet. Usually no upper-case letters are used; instead, proper nouns have underlining
(e.g. mali for (Mary), dxwlildp for (Tulalip), and sgWali? for (Nisqually). Sounds which
are not always pronounced and therefore optional in the orthography are often
parenthesized (e.g. t(i) adsgWa1 for (yours). In the work reported in this paper, use of
some of these alphabetic characters is not possible or practical, so a close transcription
system is used wherein the words are rewritten in the ASCII character set, which involves
punctuation characters as well as uppercase and lowercase letters from A through Z.

Various phonological processes are active in the language, including assimilation
as well as vowel deletion, lengthening, and reduction. Vowel length is occasionally
distinctive (e.g. sdukw (strange thing) vs. sduukw (knife). Stress is fairly regular and thus
is usually ignored in orthography. In tenns of metrical structure the feet are usual binary,
and the meter is most often trochaic.

As regards the lexicon and lexical categories, Lushootseed has few prepositions
and adverbs; predicates tend to carry this content. Some function words play several roles:
detenniners are often used as pronouns, for example.

Many loanwords have entered the language from English, French, Chinook
Jargon, and surrounding Native American languages. On the other hand, a rich degree of
lexical innovation exists in the language due to the high level of semantic, syntactic,
morphological and phonological processes available.

Though the language also has other interesting syntactic, semantic, and pragmatic
properties, they will not be addressed in this paper.

3 Computational morphology

The field of computational morphology involves pro.cessing morphological
structure via computer. This involves parsing (or breaking down or decomposing) a word
into its constituent morphemes. Another type of processing is generation, or creating an
inflected word from the specification of relevant morphemes and their meaning:

205

Many methods have been traditionally used in computational morphology; these
vary according to the morphological complexity of the languages being processed. For
example, a language like English is relatively simple morphologically. Accordingly, a
traditional (and still used) approach for English is the "cut-and-paste" method: look up a
word in the lexicon; if it doesn't exist, remove a possible affix (e.g. a putative suffix + s or
+ed) and look it up again, possibly adding or removing more letters, and repeat this
process until the word is found or all possibilities have been tried (Porter 1980). Given the
small number of morphological affixes used in English this process, though ad hoc, works
fairly well for a language like English.

On the other hand, this type of method is wholly inadequate for processing
morphologically complicated languages. The computational complexity of breaking apart
the word by stripping off possible morphemes and then accessing a lexicon to verify their
status is untenable for long words in a language with many possible morphemes. The
process becomes even more intractable when morphophonemic variation occurs across
(possible or actual) morpheme boundaries.

In order to respond to the demands of morphological complex languages, the
two-level model has been proposed (Koskenniemi 1983). This is a system that views each
word in the language as having two simultaneous representations (or correspondences):
the lexical and the surface. The lexical representation is characterized as an underlying
concatenation of morphemes in their neutral forms (generally corresponding to the
lemma). The surface form represents the actual orthographic form of the word in the

. language. Figure 2 gives examples of lexical/surface pairs for several words in various
languages.

Applying the two-level model involves describing and resolving the differences
between these levels. This is done by specifying rules, in a fairly common linguistic
format, that relate the L: S pairs. These rules are then compiled into a representation called
a finite-state table which can be used by computers to build a finite-state automaton. This
automaton is used to control the system as it progresses letter-by-Ietter through a word
trying to find correspondences between possible L:S pairs. This formal process, called
transduction, need not concern us here; we can conceive of the process as a "black box"
that takes linguistic descriptions of Lushootseed morphology and uses them to compute
possible L:S pairs.

The two-level approach has been applied to a variety of languages, generally
morphologically complex ones, such as Finnish (Koskenniemi and Church. 1988), Turkish
(Oflazer 1994), and Arabic (Beesley 1997). An application has also been developed for at
least one native American language: Aymara (Beesley and Newton. 1989).

4 The system

In this section we first sketch the basic computational system that implements the
two-level model; this system is what constitutes the "engine" of the morphological
processor. Then a description of how the system was implemented is given.

The basic system used for the Lushootseed morphology engine is PC-Kimmo
(Antworth 1990). It was specially developed for two-level processing of language data,

206

L: #sky# #sky+s# #dye+ing# #die+ing#
S: sky skies dyeOing dyOOing

L: #Sin+ta# #yom+ta# #yob+ta# #Tug+Ota#
S: SinOda yonOda yonOda TuOOida

L: #travaill+er# #katab+at# #katab+ti#
S: travaillOes kOtObOOt kOtObOtO

Figure 2: Sample lexical/surface correspondence pairs. The top line shows sample English
words, the middle line some Japanese forms, and the bottom line shows one French and two
Arabic forms. Pound signs in the lexical fonn represent word boundaries, and plus and mi­
nus signs represent morpheme boundaries. Zeros are eventually removed but are included
here to illustrate deletion explicitly.

particularly for fieldwork and text analysis tools development. Freely distributed by the
Summer Institute for Linguistics l , it provides a basic level of processing extended by
language-specific morphological knowledge sources which are specially developed by the
user. PC-Kimmo has been used in processing the morphology of a wide variety of
languages via the two-level model.

There are two basic components to the system: (i) the engine itself, which is coded
in the C programming language and which the user does not need to delve into; (ii) the
knowledge sources including lexicons, rule files, and grammar files. This paper focuses on
the latter component, which involves the morphological knowledge sources.

The engine is is capable of two basic modes of operation: (i) recognition, in which
a fully inflected word is processed by the system to arrive at a description of the word's
morphological decomposition(s); and (ii) generation, in which a specification of
underlying morphemes is processed by the system to produce the corresponding surface
form (s) of the word.

More information on how to download, install, and run the system is available
from the website referred to earlier. A discussion of the principal linguistic knowledge
sources (lexicons, rules, and word-formation constraints) for Lushootseed, and their
development, follows.

4.1 Lexicon architecture

The system uses a collection of one or more lexicons to represent the basic
morphemic inventory of a language. As a word is processed letter-by-Ietter, the lexicon
subsystem is used as a basic device to control and license search through possible
sequences of letters and morphemes for a word.

In many implementations, developers use a separate lexicon for each of the
possible positions where inflection can take place. When this is done, the user can specify
valid sequences of lexicons that should be traversed in order to piece together a word.

1 see the website at www.sil. org I pckinuno I

207

For the Lushootseed implementation, over ten separate lexicons are used. All
Lushootseed data in each lexicon is represented in the ASCII transcription mentioned
eader. Each entry in a lexicon consists of the following items of information for a
morpheme:

• the lexical form of the morpheme: the underlying representation of the morpheme

• the name of the lexicon

• possible continuation classes for subsequent morphemes: what type(s) of morpheme
can linearly follow the morpheme in question

• the gloss of the morpheme: its English translation or gloss

• features that describe, constrain) or pertain to the morpheme in question

Figure 3 shows three sample dictionary entries; on the left, an entry (from the
ROOT lexicon) whose lexical form is b;}liw , corresponding the English go by, pass, which
can optionally be followed by of the reduplication patterns; in the middle, an entry from
the PROGRSTAT lexicon (which contains forms for progressive and stative inflection)
whose lexical form is lds+, optionally followed by another type of reduplication pattern,
and glossed as ProgStatv+; and in the rightmost column, an entry from the VSUFRFX
lexicon (which contains forms for reflexive and reciprocal inflection) whose lexical fonn
is +cut, which can be followed by an inchoative marker, and which is glossed +Rfx.

Once the development of lexicons has been completed, the system can process
words by analyzing them in terms of simple concatenation of lexicon contents. Thus for
example, the system will take a word and match its beginning with one or more morpheme
entries from the first possible lexicon. It then progresses across the word, matching the
remainder of the word with other possible lexicons and their entries until the word's letters
are exhausted. The system's design thus allows for threading through the lexicons in order
to find the proper morphemic decomposition of the word. Though useful for many words,
this simplistic approach is not adequate, however, so rules are also used by the system.

4.2 Rules

Usually in a given language's morphology, and this is certainly the case for
Lushootseed, word formation does not involve simply a direct concatenation of
morphemes. Instead, complex interactions may occur at morpheme boundaries. These
interactions often involve phonological change, and hence are referred to as

\If "bEIXW
\Ix ROOT
\aIt GetPostRedup
\gll go by, pass

\If IEs+
\Ix PROGRSTAT
\aIt GetPreRedup
\gll ProgStatv+

\If +cut
\Ix VSUFRFX
\aIt GetVSuflnch
\gll +Rfx

Figure 3: Three sample lexicon entries: one for a root (left), one for a prefix (middle), and
one for a suffix (right).

208

morphophonological changes. Lushootseed has a rich inventory of such changes, and
accordingly the lexicon subsystem itself is inadequate as a source of knowledge for the
engine to use.

For this purpose, a two-level rule capability is integrated into the system. This
allows the user to specify any changes that might happen to the basic lexical form of a
word and its constituent morphemes, often as a result of phonological or morphological
processes. For example, rules can be used to handle allomorphic variants and to specify
the changes that happen at the morphophonological interface.

The format for these rules is a close approximation to the rule format used in many
phonological textbooks; it involves specifying some kind of change, a delimiter, and then
a specification of where the change takes place. The basic format, therefore, is:

change delimiter environment
The delimiter is represented by a type of arrow, which specifies what type of rule is
involved: a mandatory one, an optional one, and so forth.

For example, consider a rule in Lushootseed that optionally deletes u at the
boundary of two morphemes, as in t(u)adsb;;)da? (where the optional element is specified
with parentheses). The rule to allow both forms (i.e. with and without the optional letter
"u") is:

RULE
nu:O => [LIT'] _ +:@ VW"

where the change is the L:S pair u:o (meaning u deletes), the right arrow signifies that the
rule is optional, and the context specifies that the change can take place after the letters t
or ~ and before a morpheme boundary and a vowel.

As stated earlier, these rules are compiled up into finite-state tables and finally a
finite-state automaton which the system steps through when analyzing (or generating a
word). As the system considers each possible L:S pair, it checks the rule base to see ifany
might apply to the pair in question, and applies them appropriately. If the system enters
the automaton and is unable to reach an end state when all possibilities are exhausted,
processing fails; otherwise, success is attained and a morphological parse (or generated
surface form) is created. Many rules are usually needed to describe these changes for any
language, and these rules operate in parallel.

A special file called the rule file contains the rules and associated information used
by the system. First of all, the rule file declares the alphabet (i.e. the characters) that will
be used in the word forms. This is where the ASCII transcription scheme mentioned
earlier is defined.

In addition, the rule file contains a declaration of the special symbols used in rule
formulation. The Lushootseed engine uses the standard special symbols: 0 (zero) for a
null character (i.e. one that is not used in orthography), * (wildcard) for any character, and
for the word boundary.

The rule file also supports declaration of special subsets that might be useful in
rule specification in cases where several characters or sounds group together. For
example, Lushootseed uses (among others) VW for the set of vowels, SIB for the
sibilants, BILAB for bilabials, and CONS for consonants.

209

:::;,\,Tlr'l.n- rl.l~. ", ... hl "". ~:1A

1 J I I:p r: .1 01,f.\1 t'lYTIC o!=.t:!' r >..11 ~

.t J I H.:.t;.;, I f 1 (10 V6i. :i.lt't .1.'':':1.

I 1.' 1.4 Lv.'" ~d+ (."4(: "" ot £;,,:1

r I I 8~ f,J)OO.:tn!lI)t=":"I~tLc.

"'U11J -:- ~LI-:'~ .. 11:" vt-J'" .. £

u L • ~ ~ t'~

o L Ii .. "W W TO

J: .::; _ ~ 1- "l -
1, ,~..:

:.1. U ~ (;} U U

fJ (J .t !) 1)

u:o

VW:VW

Figure 4: A sample rule for optional syncope in Lushootseed. On the left are: comments
including a typical relevant lexical/surface pair, a specification of the rule itself, and a 4-
by-6 finite-state transition table corresponding to the rule. On the right is the automaton
implementing the rule and state table.

Most importantly, though, the rules file also contains the rules declarations
themselves. A few dozen rules have been implemented for Lushootseed. Figure 4 shows
the rule discussed earlier, its corresponding finite-state table, and its finite-state automaton.

4.3 Word grammar

Another knowledge source used by the system is a word-formation grammar. This
is a context-free grammar used to specify word-level constraints on order, structure,
cooccurence of morpheme classes. It imposes a further level of constraint to word
structure beyond that supplied by the lexicon architecture and rule base. The grammar
rules follow standard conventions for phrase-structure implementations: a left-hand
category precedes an arrow which precedes one or more elements to be combined to form
the left-hand constituent. Constraints are enforced by unification-based comparison of
compatible features. These features originate in the lexicon and can percolate through the
wor,d-formation process to control morphemic composition at any stage.

Following is a sample word-structure rule, which allows a noun to be formed from
a verb frame, root, noun, or verb to which an enclitic determiner is added.

RULE
NWord -> { VFrame / VWord / NWord / RootX } DET2

Another byproduct of the word grammar is the ability to specify and produce a
tree-based, graphical representation of the word's constituent structure. In addition,
various levels of glosses can be specified.

210

5 Current status and sample outputs

At the present time almost all of the morphemes of the language have been entered
into the system and can be processed successfully. This includes all lexical suffixes, all
affixes, and a majority of the root forms listed in the canonical dictionaries for
Lushootseed. Additionally, the lexicon architecture has been put in place. Consequently,
all words that involve straightforward morpheme concatenation are successfully handled
by the system.

In addition, several morphophonemic alternations are handled via the few dozen
rules that have been added to the system. Some of these rules, particularly the
reduplication rules, are rather complex. All of the major alternation patterns have been
implemented (e.g. epenthesis, assimilation, reduction, deletion, reduplication, etc.),
though specific patterns remain to be done. Three of the six reduplication patterns have
been implemented.

Consider, for example, the word gW ~ds~utudzi1dubut. When presented to the
system with the command "recognize", it will take the word and calculate its morphemic
decomposition (shown on the left), and its morphemic gloss (shown on the right):

PC-KIMMO>recognize gWEdsutudZildubut
gWE+d+s+?u+~tudZil+du+b+ut Dub+rny+Nornz+Perf+bend_over+OOC+Midd+Rfx

Similarly for the word adsukw axW dubs:

PC-KIMMO>recognize adsukWaxWdubs
ad+s+?u+~kWaxW+du+b+s Your+Nornz+Perf+help+OOC+Midd+his/hers

Generation is accomplished by specifying on the input a set of morphemes in their
lexical representation and using the command "generate"; the system takes the input and
produces one or more surface forms for the word. Sometimes this is straightforward, as
for the word adpasbdal?tx w, which involves a prefix, the root, and a lexical suffix:

PC-KIMMO>generate ad+~pastEd=al?txW
adpastEdal?txW

Other times, the process can become more complicated, as with the word adsukwaxw dubs,
which drops the glottal stop:

PC-KIMMO>generate ad+s+?u+~kWaxW+du+b+s
adsukWaxWdubs

As mentioned earlier, word-structure diagrams can also be produced via the word
grammar component. Currently the grammar has over 30 rules which constrain morpheme
cooccurrence and describe basic constituency stages. Figure 5 shows a sample
word-structure parse tree produced by the system for the Lushootseed pseudo-word
tub~l~skWaxWyildubxwc~t .

211

PC-KIMMO>recognize LubE1EskWaxWyildutExWCEL
Lu+bE+IEs+ AkWaxW+yi+i l+d+ut+ExW+CEL
Fut+ANEW+PrgSttv+help+YI+il+Trx+Rfx+lnc+our

1:
Word

I
NWord

----------------------------1---------------------------

FUT
Lu+
Fut+

Word

I
VTnsAsp

I
Word

I
VAspO

I
ANEW Word

bE+ I
ANEW+ VAsp2

----------------1-----------------
PROGRSTAT Word

lEs+ I
ProgrStatv+ VFrame

VFrame

VFrame

--1---
VFrame ACHV
_1__ +il

VFrame VSUFYI +il
I +yi

ROOT +yi
"kWaxW
help

VFrame NOW
+ExW

VSUFRFX +Incho
+ut

VSUFTRX +Rfx
+d

+Trx

DET2
+CEL
+our

Figure 5: A word-structure parse tree for an inflected pseudo-word in Lushootseed. The
word is improbable, but shows how a complex concatenation of morphemes can be analyzed
and diagrammed.

212

6 Future work and possible applications

Though the core functionality of the engine has been implemented, there are still
items that require work before the system can be considered completed.

For example, some lexical morpheme entries still need to be added to the lexicon.
This is particularly true for dialectal variants, which to this point have not been addressed.
In addition, English glosses need to be integrated with most of the entries. Testing
coverage still needs to be done in a more methodical manner than done so far.

While all commonly occurring morpheme sequences are currently recognized by
the system, there are several words that do not seem to conform to the standard patterns
discussed in the literature. This is particularly true for reduplication patterns. For these
problematic forms more knowledge source development has to be done. In addition, the
system does not yet handle incorporation.

The two-level system is well suited for computing other phonologically-related
properties of a language than those involving morphology; supra segmental phenomena
such as stress (and related alternations) could also be addressed, but so far have not been.

A morphology engine like the one described here can be used in a variety of
settings. As mentioned earlier, it was designed originally to serve as a tool for fieldwork
and for corpus and lexicon management. Morphological engines have also been deployed
in language-learning settings within tutoring programs, testing software, and
language-game entertainment software. Perhaps this engine might be helpful in similar
settings for future language research or computer-assisted Lushootseed language
instruction.

Morphological processing is a relatively low-level but crucial step in several types
of text-based natural language processing. For example, many search engines and corpus
manipulation tools include a morphological processing component. It is expected that this
engine will be useful in corpus-based analysis of Lushootseed wordforms, inflection,
derivation, and lexical usage. Almost all syntactic parsers also assume prior
morphological processing or integrate it into the parsing process. This engine produces
feature structures which are compatible with several widely available syntactic parsers,
and thus the construction of full -text parsers (and also generators) for Lushootseed
becomes more feasible.

Speech applications also rely on morphological engines, for both speech
recognition (where morphophonological clues are crucial for constraining the search space
of processing possibilities), and also for speech synthesis (where critical suprasegmental
properties are often determined from morphological structure). A morphology engine
should enable principled development of future speech-based Lushootseed applications.

Finally, the approach used for the Lushootseed engine should serve well in the
development of similar processors for handling other Salish languages.

References

Antworth, E. 1990. PC-KIMMO: a two-level proecssor for morphological analysis.
Number 16 in Occasional Publications in Academic Computing. Dallas, TX:
Summer Institute of Linguistics.

213

Bates, D., T. Hess, and V. Hilbert. 1994. Lushootseed Dictionary. University of
Washington Press.

Beesley, K. 1997. Finite-state descriptions of Arabic morphology. In Proceedings of the
Second Cambridge Conference: Bilingual Computing in Arabic and English,
Literary and Linguistic Computing Center, Cambridge University, UK.

Beesley, K. and S. Newton. 1989. Computer analysis of Aymara morphology. In
Proceedings of the 15th Annual Deseret Language and Linguistics Symposium,
pp. 126-144. BYU.

Bierwert, C. 1996. Lushootseed texts: An introduction to Puget Salish Narrative
Aesthetics. Studies in the Anthropology of North American Indians. University of
Nebraska Press.

Hess, T. 1976. Dictionary of Puget Salish. University of Washington Press.

Hess, T. 1995. Lushootseed reader with introductory grammar, Vol. 1. University of
Montana Occasional Papers in Linguistics. Summer Institute of Linguistics.

Hess, T. 1998. Lushootseed reader with introductory grammar, Vol. 2. University of
Montana Occasional Papers in Linguistics. Summer Institute of Linguistics.

Hess, T. and V. Hilbert. 1977. Lushootseed 1 and 2: The language of the Skagit,
Nisqually, and other tribes of Puget Sound. Daybreak Star Press.

Koskenniemi, K. 1983. Two-level model for morphological analysis. In Proceedings of
the 8th International Joint Conference on Artificial Intelligence, pp. 683-685.

Koskenniemi, K. and K. Church. 1988. Complexity, two-level morphology and Finnish.
In Proceedings of the 12th International Conference on Computational
Linguistics, pp. 335-340. Association for Computational Linguistics.

Oflazer, K. 1994. Two-level description of Turkish morphology. Literary and Linguistic
Computing 9(2).

Porter, M. 1980. An algorithm for suffix stripping. Program 14(3), 130-137.

214

