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Analogical modeling (AM) is an exemplar-based general mod
eling theory that is being applied to an increasing range ofnatu
ral language processing problems. This paper introduces AM 
as a viable approach to morphological analysis for Lushoot
seed, and shows results from applying the system to analyze 
the contents of the transcription of a well-known Lushootseed 
story. Subsequent discussion mentions the strengths and current 
weaknesses of the approach. Possible improvements and future 
applications are also sketched. 

1 Lushootseed and morphological processing 

Lushootseed (along with the other Salish languages) exhibits a high de
gree of morphological complexity. Derivational and inflectional affixation is per
vasive, partial reduplication is common, and instances of unusual morpheme types 
(e.g. lexical suffixes) occur abundantly. Consequently, words can often be very 
complex, consisting of a handful or more of juxtaposed morphemes. 

Describing word structure can be a difficult task for such languages. 
Grammars traditionally present complex words with their constituent morphemic 
structure diagrammed or at least broken out in template form. Many language 
texts and readers also present words with their morphemic composition indicated 
and sometimes with English glosses for the morphemes in question. 

Morphological analysis or parsing consists of breaking down a word into 
its constituent morphemes as shown above. The set of decisions used in parsing a 
word can sometimes be open to discussion: whereas almost everyone would agree 
that the English word "dogs" can be parsed into the singular "dog" and a plural 
morpheme "-s", determining an exact boundary for words such as "hysterically" 
may be challenging. Indeed, often other linguistic areas (e.g. phonetics, phonol
ogy, and even syntax) are implicated in the determination of which morphemes 
make up a word. Clearly this process requires knowledge of the language's gram
mar and vocabulary, of morphological principles, and of other areas of linguistics 
that playa role in morphology. 

Given that this process is already difficult for humans, how reasonable is 
it to expect that computers could handle the task of morphological parsing? For
tunately much research has been carried out in this area, with often impressive 
results. Several approaches have been implemented to carry out morphological 
analysis. One of the most successful involves finite-state techniques borrowed 
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from the field of computer science. In a finite-state approach to morphological 
analysis, linguistic rules describing phonological and morphological variation are 
established,lexicons specifying possible morphemes are supplied, and constraints 
are developed describing how words are formed. This information is compiled 
into finite-state transition tables from which automata can be built. These au
tomata analyze an incoming word letter-by-letter, validating the input against the 
morpheme lexicons and any variational changes specified by the rules. A wide 
variety of languages, ranging from morphologically straightforward to complex, 
have been the target of finite-state implementations. Recent work has shown that 
these techniques work well for Lushootseed (Lonsdale, 2001) and other Salish 
languages (Lonsdale, 2003). 

One problem with finite-state methods for the morphological analysis 
of a language is that providing the data is an extremely complex process requir
ing knowledge of linguistics, computational morphology, and computational tech
niques. Such approaches are thus appropriately called "knowledge-based" be
cause of the extensive levels of knowledge required. A "knowledge acquisition 
bottleneck" arises when systems cannot be developed fast or accurately enough 
because of the inherent complexity of the knowledge and data required by the 
system and its developers. 

Recently, researchers have studied ways of getting around the knowledge 
acquisition bottleneck for morphological processing. The Boas project (Oftazer 
et aI., 2001) allows two people-a linguist and a language informant-to develop 
knowledge sources by answering the queries of a specially-designed interactive 
system. The system acquires and learns certain aspects of a language's structure 
(including morphology) by testing hypotheses it develops based on the two ex
perts' input. The two humans accept or reject rules developed by the system, and 
their input is used in further investigation. The end result is a semiautomatically
generated finite-state engine for the language in question. 

Other machine learning techniques have also been used to guess where a 
word can be broken into its constituent morphemes-a process often called mor
phological boundary identification or morpheme discovery. Some approaches in
duce boundaries by comparing inflected words with their uninflected root coun
terpatts (Theron and Cloete, 1997), with other related inftections (Baroni et aI., 
2002), with lexically-specified morphemes (Sharma et aI., 2002), or with word 
lists (Snover et aI., 2002; Neuvel and Fulop, 2002). Other work leverages var
ious technical algorithms such as expectation minimization (peng and Schuur
mans, 2001), minimum description length (Goldsmith, 2001), maximum likeli
hood (Creutz and Lagus, 2002), latent semantic indexing (Schone and Jurafsky, 
2000), memory-based learning (van den Bosch et aI., 1996), and genetic algo
rithms (Kazakov, 1997). 

Most of these approaches require annotated human input consisting of 
several instances or exemplars indicating where the morpheme boundaries occur. 
Some also require morpheme lexicons for beginning or bootstrapping the process 
of morpheme identification. From this foundation of infonnation a typical system 
tries to arrive at appropriate procedures for positing morpheme boundaries. Such 
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approaches are called supervised ones since a human provides some of the initial 
data. Unsupervised approaches, where no annotated data is used, are also being 
addressed in current work (including some of the references cited above), but the 
issues are too technical to be considered here. 

2 Analogical modeling 

This paper proposes another approach to morpheme boundary discov
ery: analogical modeling (AM). AM has not been applied to this type of problem, 
though it has been very successfully used in other language modeling problems 
involving lexical selection, phonology, and morphology (Skousen et aI., 2002). 
Analogical modeling is a data-driven, exemplar-based approach to modeling lan
guage and other types of data. It has no rule-based component, either explicit or 
implicit, requires no explicit knowledge representations beyond the set of exem
plars, and is more flexible and robust than many traditional approaches to lan
guage modeling. Several linguistic applications have been reported using ana
logical modeling as the basic approach including Spanish diminutives, Danish 
compounds, Turkish morphophonemic alternations, Arabic lexical selection, and 
Finnish verb tense formation. 

The system operates as follows. A set of exemplars that address and il
lustrate a particular linguistic issue is prepared; each instance has a fixed-length 
feature-vector encoding that represents salient (and perhaps nonsalient or ques
tionable) properties for that instance. Each instance is labelled with an outcome 
that is used by the system to analyze how that instance behaves with respect to the 
issue in question. At run time, the user first inputs into the system the set of exem
plars with their outcomes. Then the user inputs one or more queries in the form 
of a similarly encoded feature vectors. The system matches the input queries with 
the exemplar base, and generates one or more probabilistically weighted outcomes 
for each test item. 

The system is able to tolerate noisy, contradictory, or incomplete data 
and computes its results differently from the approaches mentioned above. More 
details on the system's use in language applications are available elswhere (Sk
ousen, 1989); the statistical foundations and processing metrics (Skousen, 1992) 
are also beyond the scope of this paper. 

3 The approach 

This section reports on a series of limited experiments carried out to 
demonstrate the use of AM for predicting morpheme boundaries of various cate
gories. A sketch is given of the basic problem, where the data was obtained from, 
and how the input files were prepared. 

The basic strategy used in these experiments is to encode the instances in 
such a way that analogical effects can be seen and leveraged across data instances. 
For example, the prefix "tu-" is an aspectual prefix used to denote an irrealis 
or future. In morphologically analyzing an utterance such as "tupatidgWasbid 
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cad" (I'll think about it), a person would create a morpheme boundary between 
the prefix "tu-" and the root "patid". Of course, not all words beginning with 
this two-letter sequence employ it as a prefix: "tutum" is a root meaning dog 
salmon, "tub" is a root meaning to feed, "tuyab" means become scared, afraid, 
"tukw at" means sun, and so on. Thus the two-letter sequence "tu-" may or may 
not be followed by a morpheme boundary, depending on the surrounding context 
(e.g. other letters and word boundaries). Crucially, the decision about whether 
this position separates different morpheme can be made on the basis of certain 
cases that are already clearly known. Complicating the process is the (commonly 
occuring) situation that the morpheme tu- actually has variant forms: "ta-" and 
"t -" also occur in certain phonological (or orthographic) environments. 

3.1 Exemplar instances 

In using analogical modeling, the representation of data instances is an 
important consideration. This decision centers around how many characters should 
be used to encode each feature of a given data instance, and what linguistic fea
tures they represent. 

For this work, a minimal representation was tried first: a simple vector 
of I 0 single characters closely tied to the orthography of the word in question. 
Thus each feature in the data instance is filled by a letter or letter/phonological 
feature combination. For example, note this example of a data instance which has 
an outcome (the character 0), and which uses ten features encoded in a vector, one 
letter character per feature: 

o ==pastEd== 

This instance has a vector representing the word "pastad" (white person, roman
ized as pastEd). Since the vector needs to be 10 characters long, it is padded by 
equal signs (which represent a null value). The vector is preceded by its outcome, 
0, which means that between the letters s and t in the vector there should be no 
morpheme boundary. 

For use as its instance base, the system was given about 250 Lushootseed 
words of varying complexity with their morpheme boundaries already identified. 
This exemplar base was obtained by taking all of the subentry heads (e.g. deriva
tions, reduplications, and forms with lexical suffixes formed from main entries) 
from one portion of the definitive Lushootseed dictionary' (Bates et aI., 1994). 
The portion of the dictionary where these words were taken from is the section 
listing all words beginning with the first letter of the alphabet: the glottal stop. 
This section is 22 pages long, or just less than 10% of the alphabetic section of 
the printed dictionary. 

Each word was first converted to ASCII-based romanization using, for 
example, E for schwa, W for labialized secondary articulation, ? for the glottal 
stop, I for a stress mark, and X, S and C for the x-wedge, s-wedge, and c-wedge 

1 Hereafter referred to as '1:he dictionary" 
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. =====? 1= . =====?absS 
0 ====?luXWt 0 ====?absSa 
0 ===?luXWtx 0 ===?absSad 
0 ==?luXWtxW 0 ==?absSadE 
0 =?luXWtxwy • =?absSadEb 

?1=txWyi 0 =?absSadEb 
0 luXWtxWyic 0 ?absSadEb= 
0 uXWtxWyic= 0 absSadEb== 
- XWtxWyic== bSSadEb=== 
0 WtxWyic=== 0 sSadEb==== 
- txWyic==== 

Figure I: This is a set of vectors. The vectors on the left represent morphological 
boundary information for the (romanized) word "?uXWtxWyic", and those on the 
right specify boundaries for the word "?absSadEb". 

respectively. Next, each romanized word was converted to vectors. Vectors were 
10 features long, with each feature being represented by one ASCII character. 
Each vector consists of a 5-character left context and a 5-character right context 
surrounding a potential morpheme boundary. Since each letter pair in the word 
must be considered in tum, there are several vectors created for a given word: in 
particular, n vectors for a word consisting of n letters. 

For example, consider the word "?uxWtxWyic" (take it/or me); the dic
tionary gives its morphemic decomposition as "l'uXW-txW_yi_c". Its romanization 
fonn is "?uXWtxWyic", and its vectorization is as shown in the left-hand side of 
Figure 1. 

Each vector is preceded by its outcome, a one-character value represent
ing the type of morpheme boundary2 found between the fifth and sixth positions 
of the vector. The first vector states that there is no morpheme boundary (bence 
outcome 0) at the beginning of the word (after five null features and before the 
letters "? 1 uXw". The sixth vector, though, specifies that there is a regular mor
pheme boundary (hence outcome-) between the letter sequences "? 1 uXw-" and 
"-txWyi". The ninth vector above specifies a similar morpheme boundary be
tween the sequences "xwtxW" and "yic", and the last vector specifies a mor
pheme boundary before the final letter "c". 

Similarly, the right-hand column of Figure I shows the set of vectors for 
the word rabssadab (take a step). 

3.2 Testing the model 

Tested against itself, the system performed at 100% accuracy. In other 
words, when the system is tested on data that it has already assimilated, it does not 

2 * represents a lexical suffix boundary, + a reduplication boundary, ~ a root boundary, - a normal 
affix boundary, and 0 no boundary 
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make any mistakes. This is to be expected, since the exemplars used in testing are 
identical to those in the instance base. It is no surprise that when the system's data 
exemplar base is taken from the first part of the dictionary (the glottal-stop-initial 
roots), it will perform well on words taken from that part ofthe dictionary. 

A more interesting evaluation of the system's capabilities to perform 
analogy appropriately is to apply it to new data that does not necessarily con
stitute the instance base-vectors that the system has not processed in its store of 
exemplars. This requires the system to evaluate contextual similarities between 
given and novel data to arrive at a decision about which outcome is more appro
priate. In our case, the system would be forced to decide whether, between any 
two given letters in a given word, a morpheme boundary should be posited, and if 
so which type of boundary should be used (reduplication, root, normal, or lexical 
suffix). 

Accordingly, a widely-known story from Lushootseed culture was taken 
to test the system. This test data consisted of the story "Young Mink and Tuty
eeka" as told by Edward Sam and subsequently transcribed (Hess, 1995). 

Approximately 275 Lushootseed words long, the story contains ahnost 
500 morphemes. Though the morpheme boundaries are not identified in the source 
text, they were inserted manually based on conventions used in the dictionary. 
Processing by the vectorization code (which is written in Perl) resulted in a set of 
just over 1700 test instances corresponding to the story. 

The system then processed the test instances by comparing each instance 
against the set of original exemplars. Statistics were kept on each, and results 
were output to a file. Figure 2 shows the summary and analysis of the system 
performance for one such run. 

3.3 Interpreting the results 

The results shown in Figure 2 show that the system has performed quite 
well at the morpheme boundary identification task, achieving overall accuracy of 
almost 89% for the over 1700 decisions it had to make concerning the absence or 
presence of boundaries in all possible locations. These figures compare favorably 
with figures obtained for similar tasks in other languages. A vector length of 10 
seemed optimal; experiments run with shorter vectors yielded lower accuracy, and 
longer vectors did not improve performance. 

AM's performance is very good when deciding that a morpheme bound
ary is not present in a given situation (with an accuracy of over 96%), though 
2.62% of the time it incorrectly posits a normal morpheme boundary (outcome-) 
where in fact no boundary appears. Even better is the system's determination of 
reduplication boundaries (outcome +), with an accuracy of97.44%. 

However, closer inspection shows that the system almost always missed 
identifying the beginning of a root, with a paltry accuracy of 3.57%. There are 
three reasons for this. The first reason is that only a small percentage of the lan
guage's roots-those from the glottal stop section-were used in the exemplar 
set. Identification of roots improved dramatically (rising to about 75%) when all 
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Correct prediction made 88.67% (1519/1713) of the time 

Test items with 
96.31% 0 

2.62% 
1. 07% ~ 

outcome 0 were predicted 
(1436/1491) 
(39/1491) 
(16/1491) 

as follows: 

Test items 
66.09% 0 
33.91% -

with outcome - were predicted as follows: 
(76/115) 
(39/115) 

Test items with outcome were predicted as follows: 
92.86% 0 (52/56) 

3.57% (2/56) 
3.57% (2/56) 

Test items with outcome + were predicted as follows: 
2.56% 0 (1/39) 

97.44% + (38/39) 

Test items with outcome * were predicted as follows: 
66.67% 0 (8/12) 
33.33% * (4/12) 

Figure 2: Sample output results from an experiment. 1713 test instances were 
evaluated against the exemplars with varying success for each type of morpheme 
boundary; overall accuracy was 88.67%. 

of the dictionary's headwords (i.e. roots, primarily) were added to those from the 
glottal stop section. Another reason for poor preliminary perfonnance on roots 
is that the dictionary did not identify the beginning of a root for words that had 
no prefixes: the usual square root sign (romanized here as • ) only appears when 
a prefix is present. So the exemplar data was missing most of these instances. 
The third reason is that the test text (the mink story) was annotated following 
this same practice--only adding" when prefixes were present. . Subsequent ex
periments were perfonned where the exemplar data (Le. the dictionary subentry 
tenns) was given an explicit square-root sign in all instances, as were the words 
from the test data (the mink story). The result was dramatic: roots can now be 
predicted with 90.51 % accuracy. 

Another difficulty noticeable in Fignre 2 is that the system missed two 
thirds of the instances oflexical suffixes (outcome *). This is probably due to the 
paucity of exemplar data, and would be substantially improved if a larger portion 
of subheadings from the dictionary were used to provide exemplars. 

Most problematic is that the system was only able to identify just over 
one third of the normal morpheme boundaries (i.e. the ones that signal aspectual 
and tense-related affixes, valency suffixes, possessive clitics, and so on). Adjust
ing the exemplar set in various ways did not improve this situation markably. It 
is possible that extending the exemplar data beyond one section of the dictionary 
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(the glottal stop section) to include a richer variety of word vectors will improve 
accuracy. Choosing more linguistically informative features for the vectors, be
yond simple romanized orthography characters, will also almost certainly improve 
results. Clearly more work needs to be pursued in this area. 

4 Prospects and future work 

If the problems mentioned above can be overcome, AM-based morpheme 
boundary detection will be a quicker way to develop morphological analysis en
gines than by employing knowledge-based methods. AM morphology engines 
could conceivably be used for automatically glossing text or for parsing input for 
text understanding systems. 

Though this work has only considered Lushootseed morphology, AM 
can be straightforwardly applied to other Salish languages. The approach might 
also prove useful in other language problems; ongoing work is investigating the 
prediction of stress patterns in Salish languages via AM. 

One disadvantage in using exemplar-based systems is that examples must 
be readily available. This means that textual material (e.g. lexicons and cor
pora) must be in machine-readable fonn and accessible to researchers working in 
language modeling. Unfortunately, for less common languages like those in the 
Salish family, appropriate resources are not widely available. Though concerted 
efforts have been made to centralize and disseminate material in other languages3 , 

publicly available Salish materials are almost all in printed form. This factor may 
limit the applicability processing Salish languages using the state-of-the-art re
search being done in corpus-based and exemplar-based methods. 
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