
What is a word? Evidence from a computational
approach to Navajo verbal morphology*

Sonya Bird
University of Arizona

The goal of this paper is to take a look at what the field of computational linguistics can
tell us about the nature of words. I start with two assumptions: 1) all morphology can
be captured using finite-state processing machines (Sproat, 1992), and 2) words can be
defined in morphological terms. I show that a finite-state machine cannot handle the
facts of Navajo verbal morphology in a satisfactory manner, and propose an alternative
way of dealings with these facts, using a more powerful machine of the type used to
model syntax. Based on a discussion of how best to handle the Navajo facts
computationally, I conclude that Navajo verbs constitute a class of words that cannot be
defined in strictly morphological terms, but rather involve syntax as well as morphology.

1 Outline

It is generally assumed that morphology can be dealt with using the simplest kind of processing machine:
the finite state automaton. In this paper, I argue that dealing with Navajo verbs requires a more powerful
machine than this, and therefore these verbs involve more than simply morphology. I start by introducing
the basic characteristics of finite state automata (section 2), and of Navajo verbal morphology (section 3).
In section 4 I focus on long-distance dependencies between elements of the Navajo verb, dependencies
which cause problems for finite state machines. Section 5 offers a finite state account of these
dependencies, and outlines its flaws. Section 6 offers an much more elegant account, using a more
powerful machine. Finally, section 7 concludes by discussing the implications of the findings presented
throughout the paper, in terms of the way in which Navajo words - and words in general - should be
defined.

2 Finite state automata

Finite state automata (FSAs) are the simplest kinds of processing machines. They involve nodes, and
transitions between these nodes (Allen, 1995; Hopcroft and Ullman, 1979). In morphological processing
machines, morphemes are added during the transitions from node to node (Karttunen, 1983). Example
(1) illustrates the mechanism ofFSAs; the word nationality is generated by adding on its component
morphemes one at a time, during the transitions between states 1-4. The nodes are represented by circles,
and the transitions by arcs. The symbol > indicates the initial state; the double circles indicate the final
state, i.e. the state in which the form produced is a well-formed word1

•

(1) FSA creating the word nationality

>(D nation► ~

FSAs can either generate or recognize words given their morphological structure. In this paper, I refer
only to their generative capacity.

One characteristic of FSAs that will be crucial to this paper is that they have no memory other than
the path that they go down. The only way of keeping track of which elements have been generated is by

• This work was supported in part by the Social Sciences and Humanities Research Council of Canada, grant # 752-98-0274. Thanks to
Michael Hammond, Terence Langendoen, and everyone at WSCLA V for useful discussion.
1 It is possible to have more than one final state, as is the case in the FSAs discussed in the following sections.

27

looking back at the sequence of transitions that occurred during the generative process. This limitation
will be discussed further in the following sections.

3 Navajo verbal morpholgy

The standard view of Navajo verbal morphology is that it is templatic (Hale, 1972; Kari, 1976; Sapir and
Hoijer, 1967; Young and Morgan, 1987; Young, 2000). Verbs consist of templates, whose slots are filled
by the verb preceded by various prefixal elements, both derivational and inflectional. A "generic" version
of this template, based on work by aforementioned researchers, is provided in (2). The examples in (3)
illustrate how this template accounts for the order of morphemes in the verbal complex.

(2) Navajo verbal template

0 1 2 3 4 5 6 7 8
objects a. PostPs iterative distr. direct a. areal Adverbial Aspect subject
of b. Lexical mode plural object b. deictic (lexical)
PostPs Prefixes subject Prefixes

(3) Examples of the templatic approach to Navajo's verbal morphology2

a.

Prefix breakdown Verb form English gloss

di-sh-ni
6-8-10

dishni I say it

9
class

b. da-bi-di-sh-ni
3 -4-6-8-10

dabidishni I say it to them individually

10
Vstem

C. bi-naa-da-ho-ji-yi-lh- 'aah binaadahojiilh'aah
0- 1 - 3 -4 -5-7-9-10

they (3+) are learning it again

To generate a form like (3)b, a FSA simply adds one morpheme at a time using a series of transitions:

(4) Example: FSA creating the word dabidishni

CD--►
bi- di-

►
sh-

► Q)

Although this mechanism may seem fairly straight-forward, a closer look at the data will show that FSAs
quickly run into difficulties when dealing with Navajo. In the following section, I focus on one source of
these difficulties: long-distance dependencies between various verbal morphemes.

4 Long-distance dependencies between various morphemes

The complexity of Navajo verbal morphology is due in part to the long-distance dependencies between
various verbal morphemes, i.e. dependencies between non-contiguous morphemes. Example (5)
illustrates such a dependency; the verb stem nish requires the atelic marker na-, and these two morphemes
are separated by another one, the classifier t-3. The dependency is shown by the line linking the two
relevant morphemes.

2 Throughout this paper, the sequence lh is used for the voiceless lateral fricative. Nasalization on vowels is indicated by tilda (for
example, nasalized a is written a). The numbers refer to the position the morpheme holds in the verbal template.
3 The following abbreviations are used in the examples throughout the text:
sg, di: singular, dual I: imperfective semi]: semiliterative
1, 2: first, second person P: perfective rev: reversionary

class: classifier SRO: solid round object (thematic prefix)

28

(5) Example of a long-distance dependency in Navajo

naa- 1- nish naalnish
atelic-class -work I am working
2- 9 10
I I

It is often the case that one verb form contains multiple dependencies. Nested dependencies are ones in
which one dependency is embedded in another - see (6)a. Crossed dependencies are ones in which two
dependencies overlap - see (6)b. In some verbs, there are both nested and crossed dependencies, as
illustrated in (6)c.

(6) Multiple long-distance dependencies in Navajo

a. Nested dependencies

na- sooh- 1- nish
atelic-P+ 2dl4-class-work(P)

l 7u- 10

b. Crossed dependencies

ch'i-ni- nish- t'aah
out- SRO-P+ lsg-protrude
1- 6- 7+8- 10
I I I I

c. Nested and crossed dependencies

ch' i-na- naa- nish- d- zid
out- rev-semil-P+ 1 sg- class- wake
1- t- 1- 7+8- 9- 10
i r.__ _____ 1 I

~
L__J

nishoolhnish
you (2) work (perfective)

ch' ininisht' aah
I slowly stuck my head out

ch' inanaanishdzid
I woke up again

These dependencies are ubiquitous in Navajo, as in other Athapaskan languages, and therefore must be
dealt with by any computational model of verbal morphology. We tum next to how FSAs account for
these dependencies.

5 FSAs and Navajo long-distance dependencies

As already mentioned, FSAs have no external memory; memory consists of the path that is followed when
generating a particular output, i.e. which transitions and which nodes were used. What does this mean for
long-distance dependencies? In order to capture them, it is necessary to have a separate branch for each
string that involves a dependency. The result is that, for each dependency, all of the material that is
between the two co-dependent morphemes must be duplicated. A FSA handling all the long-distance
dependencies in Navajo will necessarily involve massive duplication, and this will be its downfall.

4
I follow McDonough (1990) in considering the mode and subject prefixes merged into one portemanteau morpheme, containing

information on both the aspect and the subject of the verb. I call these mode+subject complexes conjugation patterns.

29

As a concrete example, take the adjectival stative verbs in Navajo. These form 3 classes, the di
class, the lhi- class, and the ni- class:

(7) Example: adjectival stative verbs (3 classes)

di- lhi- ni-
a. di-ts'id tough lhi-kizh spotted ni-tsaa big
b. di-jool round lhi-tso yellow ni-teel wide
C. di-jee' sticky lhi-ba gray ni-daaz heavy

These adjectival verbs can be conjugated by adding a person/number prefix between the adjectival prefix
and the adjectival stem. The conjugation prefixes for the 3 classes are illustrated in (8). Notice that the
prefixes for di- and lhi- classes are the same. I group these together and call them Conj 1, to distinguish
them from the ni- class conjugation prefixes, which I call Conj 2. Some examples of conjugated adjectival
verbs are found in (9).

(8) Conjugation prefixes
Conj] Conj2

di- lhi- ni-
1st sg nish- nish- sh-
2nd sg ni- ni- i-

3rd sg/dl 0 0 0
1st dl nii- nii- ii-
2nd dl noh- noh- oh-

(9) Some examples of conjugated adjectival verbs

a. di-nish-ts'id I am tough
b. lhi-nish-kizh I am spotted
C. ni-sh-tsaa I am heavy

Let us take a look at how these adjectival verbs can be generated using a FSA. The first machine to
consider, presented in (10), is one that collapses the conjugation prefixes of the di- and lhi- classes. This
machine is simple and elegant, but as we shall see, overgenerates.

(10) FSA for adjectival verbs without duplication (elegant but overgenerates)

di-/ lhi- Q)

>Q-s:: CD

Conj• (D

Conjl = {nish-, ni-, 0, nii-, noh-}

Conj2 = {sh-, i-, 0, ii-, oh-}
V stem(di) = {ts' id, jool, jee', ... }
Vstem(lhi) = {kizh, tso, ba, ... }
V stem(ni) = { tsaa, teel, daaz, ... }

Vstem(di)Nstem(lhi-) ►@

Vstem(ni) ► @

The problem with the FSA in (10) is that by collapsing the conjugation prefixes of the di- and lhi- classes,
there is no way of ensuring that the adjectival stems will be generated with the appropriate adjectival
prefixes. This is illustrated by the examples in (11).

30

(11) Possible outputs (overgeneration):

a. grammatical forms generated
di-nish-ts'id I am tough
lhi-ni-kizh you are spotted

b. ungrammatical forms generated
*di-nish-kizh di-class prefix with !hi-class verb
*lhi-ni-ts'id !hi-class prefix with di-class verb

In order to avoid generating adjectival verbs like the ungrammatical ones in (l l)b, a FSA must have
entirely separate branches for di- and !hi- classes. The FSA in (12) includes these separate branches, and
as a result involves a certain amount of duplication. Indeed, in (12), Conj 1 is found twice, once in the di
class branch, and a second time in the !hi- class branch.

(12) FSA for adjectival verbs with duplication (inelegant, but does not overgenerate)

Q)
Conjl Vstem(di)

@) ► Q) ►

~
0 Q)

Conjl Vstem(lhi)

@ hi- ► ► @) ►

~ Conj2 Vstem(ni)

@ Q) ► @)
Although the FSA in (12) is not as elegant as that in (10), it does not overgenerate. It may seem like a
certain amount of duplication is a small price to pay for a machine that generates only well-formed words.
However, this duplication quickly becomes a problem, as the following example illustrates.

A more complex example involves the dependencies which exist between the conjugation
patterns (mode+subject prefixes) and the verb stem in active verbs. In Navajo, there are 18 possible
conjugation patterns, depending on 1) the temporal information that is to be conveyed (tense, mood,
aspect), 2) the particular verb stem, and 3) the particular prefixes5

• Every time there is a dependency
between a verb stem and a prefix that precedes the conjugation pattern, the conjugation pattern (which is
between the two morphemes) must be duplicated. The result is that not only must there be separate
branches for each of the 18 conjugation patterns, but also additional branches (duplications) for each
dependency between a prefix preceding the conjugation pattern and a verb stem. In (13), two examples
are presented in which the conjugation falls between two co-dependent morphemes. In (13)a, it falls
between ni- and -t'titi; in (13)b, it falls between na- and - nish (as does the classifier/-).

(13) Examples (the relevant co-dependent morphemes are underlined)

a. ch'i- ni- nish- t'aa I slowly stuck my head out
out- SRO-P+ 1 sg- protrude
1- 6- 7+8- 10

I I I I
b. na- ni- 1- nish You are working

atelic-1+ 2sg-class-work (I)
2- 7+8- 9- 10

The FSA in (14) illustrates the number of branches required to account for the two forms in (13), as well
as for the basic set of 18 conjugation patterns.

5 For a complete list of the conjugation patterns, please see the appendix.

31

(14) FSA dealing with the dependencies in (13):

0 0 ► O ►@ ni- ►
I

msh
i r aa (13)a i
i

. ·-·-·-·-·-·-·-·-·-·-·-i

0 class ► O --+
Vstem

0 class ► Q vsfeiit

o➔ 0 0 Qlass► Q v~

0 class► Q v~

0 class► Q v~
na-

0
class

► o
Vstem

--+
18 basic conjugations

--+ :·-·-·-·-·-·-·-· ► -------·-·-·-·-·-·-·-·-·-· i ► ~ .
Q na- Q j ni- Q 1- I Q nish \Q.;(13)b

r·-·-·-·-·-·-·-·-·-·-·-•
! i
! i-
! .-
! ·-·-·-·-·-·-·-·-·-·-·-i

i !
i !
i·-·-·-·-·-·-·-·----·-·-·-·-·-·-!

duplicated material necessary to keep track of long-distance
dependencies.

The FSA in (14) offers some idea of the complexity (in terms of amount of duplication and number of
branches) that is involved in a finite-state approach to Navajo verbal morphology. The set of possible verb
forms in Navajo is bound, therefore it is possible to create a FSA to deal with all the data. However,
dealing with all of the long-distance dependencies would require the FSA to be extremely big and clunky.

6 Alternative: an augmented finite state automaton (AFSA)

Once again, the reason that a FSA has difficulty dealing with Navajo verbal morphology is because it
lacks any external memory, which could keep track of long-distance dependencies in the verbal complex.
A more appropriate machine for generating Navajo verbs is an augmented finite state automaton (AFSA).
AFSAs are equivalent in generative power to FSAs, but they contain a memory that allows them to keep
track oflong-distance dependencies (Allen, 1995; Hopcroft and Ullman, 1979).

There are several variants in terms of how the memory is structured; the one presented here is a
random-access (data-driven) memory6

. Memory consists of an unordered set; elements (morphemes)
stored in memory can be accessed as needed. This allows one to deal with both crossed and nested
dependencies without referring to stacks and cues. The AFSA in (15)b generates the form in (15)a~ the
memory works as follows: in state 1, the memory set is empty. When ch 'i is added, it is inserted into the
memory, since it is involved in a dependency (it requires a particular conjugation in the perfective mode:
the ni- perfective). Thus, in state 2, the memory set contains the element ch 'i. In the transition to state 3,
ni- is added, which is also entered into memory, since it is involved in a dependency with the verb stem.
Once nish- is added in the transition to state 4, ch 'i can be taken out of memory, since the dependency it is

6 Terence Langendoen, personal communication.

32

involved in has been satisfied. Similarly, once the verb stem is added, ni- can be taken out of memory. In
generating a well-formed verb, the memory set will always be null in the initial and the final states.

(15) Using random-access memory

a. form: ch'i- ni- nish- t'aa I slowly stuck my head out

b. AFSA

>(u ch'1 ► (v t'aa ►@
Memory
state memory set

1 0
2 {ch'i}
3 {ch'i, ni}
4 {ni}

5 0

There are two main advantages to using an auxiliary memory: 1) the massive duplication involved with
FSAs is eliminated, and 2) the memory captures well the nature of the dependencies. Indeed, the AFSA
makes it clear which elements are linguistically more closely related to one another, since they must be
checked against one another in the memory set, in order to generate a well-formed word.

Another way to conceptualize the random-access memory is through the use of features. In (l 5)b
above, the elements contained in the memory were the actual morphemes. An alternative is to store in the
memory only certain relevant features, rather than entire morphemes. For example, for the form in (15)a,
the following features could be used:

(16) Use offeatures

a.
b.
C.

d.
e.

morpheme
lexical prefix ch' i (1)
ni-perfective (7)
Vstem t'aa(lO)
adverbial prefix ni- (6)
Vstem (10)

features
[ni-perfective]
[ni-perfective]
[SRO]
[SRO]
[...] particular conjugations (7)

The AFSA in (17)b is identical to the one in (15)b, except that the memory consists of a set of features,
rather than a set of morphemes.

(17) Memory and features

a. form: ch'i- ni- nish- t'aa I slowly stuck my head out

I

b. AFSA

>(i) ch'1 ► <v ► G) ~ G) ►@ Ill t' aa
[ni-P] [SRO] [ni-P] [SRO]

33

Memory
state memory set

1 0
2 {[ni-P]}
3 {[SRO], [ni-P]}
4 {[SRO]}

5 0

The model outlined in (17) is reminiscent of the feature checking process involved in the Minimalist
model of syntax, where well-formed sentences result from successful feature checking (Chomsky, 1997).
The details of a morphological processing machine that uses a random-access memory set of the type
outlined above still need to be worked out. One issue that I have glossed over how to tell whether a
feature should be placed in memory for reference to it later on7

. Perhaps the best solution would be to
enter all features into memory, and mark those which must be checked before the end of the generative
process.

The final example presented shows that AFSAs will not generate forms in which dependencies
are not satisfied. In (18)a, the SRO prefix, required by the verb stem t'lili has been omitted. When the
AFSA arrives at the final state, there is nothing in the memory set against which to check the [SRO]
feature on the verb stem. For this reason, the machine crashes, and fails to produce the faulty form.

(18) An ungrammatical example

a.

b.

form: *ch'i-

AFSA

>(D ch'i
[ni-P]

Memory
state

1
2
3

4

5

...

-nish-t'aa

I

(D 88 ...

memory set

0
{[ni-P]}
{[ni-P]}

0

The ni- prefix is missing

CD ~ <D
[ni-P]

0 ➔ CRASH!

►@ raa
[SRO]

7 Conclusion - Implications for the structure of words in languages such as Navajo

In the preceding sections, we have seen that it is possible to create a FSA that will generate all possible
verb forms (since the system is bound), but it will necessarily involve massive duplication. A much more
efficient machine is an AFSA, which uses an auxiliary memory to keep track of long-distance
dependencies. The random-access memory proposed here is an unordered set, which has as members
features that are specified in the lexical entry of each morpheme.

The AFSA outlined above resembles machines used to capture syntactic facts of natural
languages, which are more computationally complex than morphological facts. As mentioned above, its
mechanism also resembles the one used in the Minimalist Program to produce well-formed sentences.
Given that the machine used for creating Navajo verbs must be more powerful than one that can deal with
morphology, it seems that Navajo verbs involve more than morphology - rather, they involve syntax as

7 This would be necessary in the case of a right-to-left dependency, for example if the verb stem requires a particular prefix.
8 This transition does not involve addition of any morphemes.

34

well. Thus, words - or at least Navajo verbs - should be defined syntactically as well as morphologically.
Note that there is another possibility here: Navajo verbs in fact involve only morphology, and the claim
that all morphology can be handled by finite-state machines is wrong. Certainly, there are other
morphological phenomena which are problematic for finite-state accounts - for example, reduplication
(Sproat, 1992). I have chosen here to assume that finite-state machines can handle all morphological
processes, and that Navajo verbs involve more than morphology. I have done this because the alternate
approach leads to serious implications for the field of computational linguistics, implications that I am not
yet certain are well-founded. In any case, this issue certainly requires further attention.

Finally, the infonnation used by the AFSA to generate verbs (features) tells us about the what
information is likely to be included in lexical entries associated with words. Further research in this area
will contribute valuable insight into the question of how words such as Navajo verbs are stored in the
mind.

References

Allen, J. 1995. Natural language understanding, 2nd edition. Redwood City, CA: The
Benjamin/Cummings Publishing Company, Inc.

Chomsky, N. 1997. The Minimalist Program. Cambridge, Massachusetts: The MIT Press.
Hale, K. 1972. Letter to Jim Kari, April 26 1972.
Hopcroft, J. and Ullman, J. 1979. Introduction to Automata Theory, Languages, and Computation.

Reading, Massachusetts: Addison-Wesley Publishing Company.
Kari, J.M. 1976. Navajo Verb Prefix Phonology. New York, NY: Garland Publishing Inc.
Karttunen, L. 1983. "KIMMO: a general morphological processor". Texas Linguistics Forum 22, 165-

186.
McDonough, J. 1990. Topics in the Phonology and Morphology of Navajo Verbs. Doctoral

dissertation. University of Massachusetts.
Sapir, E. and Hoijer, H. 1967. "The phonology and morphology of the Navajo verb. UCPL 50.

BerkleyCA.
Sproat, R. 1992. Morphology and Computation. MIT Press, Cambridge Massachusetts.
Young, R. W. 2000. The Navajo Verb System - an Overview. Albuquerque, NM: University of New

Mexico Press.
Young, R.W. and Morgan, W. Sr. 1987. The Navajo Language: A Grammar and Colloquial Dictionary,

2nd edition. Albuquerque, NM: University of New Mexico Press.

35

Appendix - Eighteen possible conjugation patterns in Navajo verbs

a. Imperfective

i)
ii)
iii)
iv)

0-imperfective (yi-imperfective)

ni-imperfectivc
long-vowel imperfective
si-imperfective

b. Perfective

i)
ii)
iii)
iv)

yi-perfective
ni-perfective
long vowel perfective
si-perfective

Each perfective form is further subdivided into two forms that go with

c. Future

i)
ii)

d. Optative

i)
ii)

1) 0 and lh classifiers, and

2) d and 1 classifiers, for a total of 8 forms.

regular future
long vowel future

regular optative
long vowe optative

e. Progressive

36

i)
ii)

in combination with distributive plural da-
not in combination with distributive plural da-

Number (total: 18)

1
2
3
4

5,6
7,8
9, 10
11,12

13
14

15
16

17
18

