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Abstract: Exemplar theory (Johnson 1997) claims that listeners store exemplars of speech that 

they have experienced in detail, enabling them to categorize new words in memory without 

speaker normalization. In applying exemplar theory to intonation perception, we have developed a 

computational model that categorizes English statements and echo questions by comparing how 

similar a sentence is to previously encountered sentences, based on three weighted properties: 

1) the timing of the nuclear tone, 2) the direction of the post-nuclear F0 change, and 3) the speed at 

which the post-nuclear F0 changes. When trained and tested on 64 pairs of statements and echo 

questions, the model correctly categorized over 92% of the sentences when only direction was 

included in the similarity calculation. This result demonstrates that it is feasible to develop an 

exemplar-based computational model that can learn to categorize English statements and echo 

questions without normalizing F0 to account for speaker variability. 
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1 Introduction 

The motivation for this research project was to better understand how listeners can perceive the 

intonation of statements and questions, given the inherent variability in speech (e.g., Fant 1972; 

Peterson & Barney 1952; Simpson 2009). In speech, variation in pitch can be used to distinguish 

between different types of sentences. For example, English speakers typically lower the pitch at 

the end of a statement (e.g., ‘John reads books.’), but raise the pitch at the end of a yes/no 

question (e.g., ‘Does John read books?’) (Wells 2006). Echo questions (e.g., ‘John reads books?’) 

are a type of yes/no question, which has the same rising intonation as the other types of yes/no 

questions but the same word order as statements.  

 This project aimed to investigate whether a working computational model of exemplar theory 

(Johnson 1997) can successfully perceive the difference between statements and echo questions 

in English. This theory holds that listeners store exemplars of speech that they have experienced 

in fine phonetic detail in memory. They can then use the phonetic details of these exemplars to 

categorize new tokens without the need for speaker normalization (Johnson 1997). When a new 

token is encountered, its similarity with all the exemplars stored in memory is calculated. The 

new token is then categorized according to which group of exemplars it is most similar to, 

overall.  

 Our methodology was first to create an exemplar-based computational model which can learn 

to categorize English statements and echo questions, based solely on their intonation patterns, and 

then to test how well this model can categorize statements and echo questions produced by both a 

male speaker and a female speaker of English, without normalizing fundamental frequency (F0) 

to account for speaker variability and gender variability. Although researchers have developed 

exemplar-based models that can identify single words or sounds (e.g., Goldinger 1998; Johnson 

1997), few studies have applied this theory to the perception of intonation (e.g., Walsh, 
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Schweitzer, & Schauffer 2013) and, in particular, sentence intonation (e.g., Chow & Winters 

2015). The idea is that if a similarity-based calculation module can accurately classify novel 

sentences at an acceptable rate on the basis of intonation alone, it could be expanded to account 

for the human perception of intonation more generally. 

2 Proposed Intonation Perception Model 

2.1 Exemplar-based Classification 

The following model of intonation perception of statements and echo questions in English uses an 

exemplar-based process of categorization to determine the sentence type (statement or question) 

of a new token. It adopts a simplified version of the algorithm proposed by Johnson (1997) and 

Nosofsky (1988). 

2.1.1 Similarity Calculation 

The model categorizes a new token (i.e., a sentence) based on how similar it is, overall, with all 

of the experienced tokens (or exemplars) in memory as follows. First, the model derives the 

auditory distance dij between the new token i and every exemplar j in category C by calculating 

the Euclidean distance between their auditory properties m, as defined in (1). Each auditory 

property is weighted by its attention weight wm; this attention weight can vary from 0% to 100% 

and reflects the varying degree of attention that the listener may give to the different auditory 

properties of the token as the listener experiences it. The specific auditory properties that this 

model uses in the similarity calculation will be described in Section 2.1.2. 

 

(1)  Auditory distance:                           

 

Secondly, the model derives the auditory similarity sij between token i and exemplar j by applying 

an exponential decay function to the auditory distance dij so that the nearest auditory exemplars 

have more influence than the more distant exemplars in determining the auditory similarity value, 

as defined in (2). 

 

(2)  Auditory similarity:             

 

Finally, the model derives the overall similarity Si between token i and category C by summing 

all of the auditory similarity values sij between i and every exemplar j in C, as defined in (3). 

 

(3)  Overall similarity:               

2.1.2 Auditory Properties 

Prototypically in English, statements end with a falling intonation and echo questions end with a 

rising intonation (Wells 2006). This fall or rise in F0 commonly starts at or near the nuclear tone 

(i.e., the last prominent, stressed syllable) of the intonational phrase (Pierrehumbert & Hirschberg 

1990), as shown in Figure 1. Since the nuclear tone and the post-nuclear intonation are potentially 

salient cues for sentence type, we derived three auditory properties for the similarity calculation 

from this tone: 1) the relative timing (expressed as a percentage) of the nuclear tone in the 

intonational phrase, as defined in (4), 2) the direction (rising or falling) of the intonational phrase 
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immediately following the nuclear tone, as defined in (5), and 3) the speed (or the absolute slope 

value) of the intonational phrase immediately following the nuclear tone, as defined in (6). 

 

 
 

 

 

 

 

Figure 1: Nuclear tones of the statement and question intonational phrases of ‘Ann teaches history’ 

produced by a native speaker of English 

(4)  Timing:   PrenuclearTime / (PrenuclearTime + PostnuclearTime) * 100 

      where PrenuclearTime = the time in the sentence before the nuclear tone 

      and PostnuclearTime = the time in the sentence after the nuclear tone. 

       

(5)  Direction:  If (y1 – y2) / (x1 – x2) < 0, then ‘falling’; 

      else if (y1 – y2) / (x1 – x2) > 0, then ‘rising’; 

      else ‘level’ 

      where (x1, y1) = the time and F0 value of the nuclear tone 

      and (x2, y2) = the time and F0 value of a post-nuclear point  

       in the intonational phrase. 

 

      See Section 2.2.2 on the settings of the analysis function of the 

      computational model for more details about how we calculated this  

      post-nuclear point. 

 

(6)  Speed:   | (y1 – y2) / (x1 – x2) |  

      where (x1, y1) = the time and F0 value of the nuclear tone 

      and (x2, y2) = the time and F0 value of a post-nuclear point 

       in the intonational phrase. 

2.1.3 Categorization Process 

Figure 2 illustrates the categorization process for a new token; this token is represented by the F0 

contour shown at the top. First, the computational model calculates the auditory similarity 

between this new token and every exemplar in both the ‘question’ category (represented by the 

exemplar cloud on the left) and the ‘statement’ category (represented by the exemplar cloud on 

the right). This similarity value is determined by the Euclidean distance of the weighted auditory 

properties (timing, direction, and speed) between the token and the exemplar. In Figure 2, the 

Ann                             teaches                                            history? 

 Ann                             teaches                                           history. 

last prominent, stressed syllable [ˈhɪs] 

225 Hz 
 
75 Hz 

225 Hz 
 
75 Hz 
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token’s auditory similarities with the two question exemplars are 0.7 and 0.9 and the 

corresponding similarities with the statement exemplars are 0.3 and 0.1. Since the token’s overall 

similarity with the ‘question’ category (0.7 + 0.9 = 1.6) is greater than that with the ‘statement’ 

category (0.3 + 0.1 = 0.4), the model categorizes the token as a ‘question’. Once a token has been 

categorized in memory, it is used, along with the existing exemplars, in the categorization process 

for subsequent tokens. For instance, for future tokens, the new token at the top of Figure 2 would 

be treated as an exemplar in the ‘question’ cloud. 

 

 

 

 

 

 

 

 

 
 

Figure 2: An illustration of the categorization process of a new token 

2.2 User-interactive Interface 

We designed the model with a user-interactive interface in Praat (Boersma & Weenink 2013) that 

comprises six functions. As shown on the interface’s main menu in Figure 3, the functions are 

preanalysis, analysis, extraction, training, testing, and cross-validation. These step-by-step 

functions provide users with the flexibility of adjusting specific settings during each step; they 

also enable users to view the results in each step and to re-run a step if necessary. To begin, the 

user specifies the data directory where the sound files are located. 

 

‘statement’ exemplars 

 

‘question’ exemplars 

0.7 

0.9 
0.1 

0.3 
overall similarity 
= 0.7 + 0.9 = 1.6 

overall similarity 
= 0.3 + 0.1 = 0.4 

new token 
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Figure 3: The main menu of the computational model 

2.2.1 Preanalysis 

The preanalysis function prepares the sound token for acoustic analysis. It reads in the audio-

recorded samples of the statements and echo questions from the data directory specified on the 

main menu and removes any silence (or voiceless part) preceding and following the speech 

sound. The model’s default pitch range for tracking the fundamental frequency of the intonation 

contour is 75–500 Hz. The user can adjust this pitch range, for example, to 75–600 Hz for 

analyzing the question intonation of female speakers, which can sometimes go beyond 500 Hz. 

 

 

Figure 4: The parameter setting window of the preanalysis function 
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2.2.2 Analysis 

The analysis function locates any salient statement or question cues in the intonation contour of 

the sound tokens. Often, certain parts of the F0 contour may be voiceless due to voiceless 

segments (e.g., /h/ and /s/). These voiceless parts appear as gaps in the F0 contour, as shown in 

the statement and question contours in Figure 5.  

 
 

 

Statement: 

 

Mary has a little lamb. 

  

Echo question: 

 

Mary has a little lamb? 

 

 

Figure 5: Voiceless gaps in the F0 contours of the statement and echo question: ‘Mary has a little lamb’ 

 

 

 

 

 

Figure 6: The result of the analysis function, showing the location of the nucleus and the tail of the 

interpolated statement and question contours of ‘Mary has a little lamb’ 

Nuclear tone 
    Nucleus + tail 
(time-normalized) 

* 
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This function first fills the gaps within an F0 contour using linear interpolation (Praat’s 

interpolate function) in order to create a continuous curve. It then locates the nuclear tone in the 

sentence contour, as displayed in Figure 6. (More information on how the model accomplishes 

this is given below.) In Figure 6, the top half shows the F0 contour of the statement and the 

bottom half shows the echo question of ‘Mary has a little lamb’. The boxes on the left show the 

entire F0 contours of the sentences. The boxes on the right show the tail ends of these F0 contours 

starting from their nuclear tones. These tails are time-normalized between the two sentence types, 

as indicated by the grey dotted lines, while their actual durations in time relative to the complete 

F0 contours are shown in the boxes on the left. In this example, the nuclear tone of the statement 

occurs at the 1.2 seconds time point of the F0 contour, while the nuclear tone of the question 

occurs at the 1.32 seconds time point of the F0 contour. 

 

 

Figure 7: The parameter setting window of the analysis function 

To locate the nuclear tone (and the final rise or fall of the F0 contour), the model compares the 

slopes between successive time points of the F0 contour as follows. First, the model calculates the 

slope between time point 0 (at time 0 seconds) and time point 1. (The default interval between 

time points is 40 milliseconds but it can be adjusted in the parameter setting window, as shown in 

Figure 7.) Then, it calculates the slope between time points 1 and 2 and compares this slope with 

the first slope to determine whether there has been a change in the direction of the intonation rise 

or fall. Next, it calculates the slope between time points 2 and 3 and compares it with the second 

slope. It continues to do so with the subsequent time points until the end of the contour. After this 



 

 

 

8 

analysis, the model identifies the nuclear tone as the onset of the final fall or rise in the intonation 

contour. 

Shorter intervals between time points require more computations to determine the time 

points, slopes, and the changes in slope. On the other hand, longer intervals between time points 

lead to a greater risk of missing the exact location of the nuclear tone. The user must balance 

these concerns in setting this parameter in order to yield the most accurate and efficient 

performance of the model.  

Additionally, there may be tiny bumps in the F0 contour that can be mistaken as nuclear 

tones, such as the one near the end of the statement at the 1.67 seconds time point in Figure 6 

(which is indicated by an asterisk *). The effective change parameter, shown in Figure 7, instructs 

the model to ignore any F0 change in an interval that is less than the specified value. The default 

value is 20 Hz. Figure 8 shows an example. Despite the slight fall at the very end of the F0 

contour, the model was able to correctly identify the low nuclear tone (L*). 

 

   

Figure 8: The F0 contour of ‘Mary is a good dentist?’ with the L* nuclear tone on the penultimate syllable 

[ˈd  n] (left), and the model’s interpolated contour of the nucleus and tail (right) 

2.2.3 Extraction 

The extraction function extracts the auditory property measurements (i.e., timing, direction, and 

speed) from the sound tokens. By default, the pitch analysis and pitch range settings for the 

extraction function are the settings that were specified for the analysis function. If the user 

requests the model to extract one sound, it will display its auditory property measurements in the 

temporary output window so that they can be reviewed. If the user requests the model to apply the 

extraction function to all of the sound tokens, it will save the auditory property measurements to 

an output file that can be used by the training and testing functions in the next steps (or later on). 

2.2.4 Training 

Human listeners may give different degrees of attention to different auditory properties. For 

example, listeners may pay more attention to the direction of the nuclear tone (whether it is a fall 

or rise) if it serves as a better cue in identifying the sentence type than the relative timing of the 

nuclear tone in the intonational phrase. Therefore, direction might be weighted more than timing 

in distinguishing between statements and echo questions. To simulate this reality, the model 

assigns different weights to the auditory properties when calculating the auditory distance 

between a new token and an exemplar in memory.  

 The primary role of the training function is two-fold. 1) It enables the model to experience 

some of the tokens so that it will have some exemplars in memory for testing. 2) It trains the 

model to learn the weight distribution or the generalized weights of the auditory properties that 

would yield the best accuracy rate in categorizing new tokens. At the start of training, the model 

is given a set of initial weights of the auditory properties of the tokens. At the end of training, the 
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model not only has experienced the tokens that were presented to it but also has learned, to a 

degree, the general intonation patterns of these tokens as reflected in the shifting of the weights 

from the initial weights to the generalized weights. For example, in Figure 9, the window on the 

left shows the default initial weights of 50% for each of the auditory properties at the start of 

training. The window on the right shows the generalized weights of 30%, 40%, and 0% for speed, 

direction, and timing, respectively, at the end of training. 

 

 

 

Figure 9: The parameter setting window for the training function before (left) and after (right) training 

Using a trial-and-error approach, the model searches for an optimal set of generalized weights. 

From the initial set of weights, it increases or decreases the weight of one auditory property by 

one step size at a time, recomputing the similarity values with each step to determine if these 

values would yield a higher accuracy rate in categorizing the tokens than the previous step. It 

continues until it can no longer find a higher accuracy rate. The weight step size is how much the 

model increases or decreases the auditory property weight during each learning trial. The default 

step size is 10%. Larger step sizes help to speed up the search process with bigger jumps in 

weight, which is advantageous when the auditory property being considered is an ineffective cue. 

However, if the auditory property is an effective cue, larger step sizes could undesirably skip over 

an optimal weight. 

 In general, more training, learning, or experience tends to yield a higher accuracy rate in 

testing. By default, the number of tokens from the data samples that will be used for training is set 

to 90%. If the model learns to categorize the training tokens perfectly or too specifically, it might 

fail to recognize the general structure of the tokens. Therefore, the model is set, by default, to stop 

training once it reaches an accuracy rate of 70%. However, if the model fails to reach the default 

learning rate, training could continue forever. The maximum epochs parameter prevents this from 

happening by specifying the number of times that each auditory property’s weight can be 

adjusted. The default setting is 11, which is the default maximum weight of an auditory property 

divided by the default weight step size and then added to one. 
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2.2.5 Testing 

The testing function tests how accurately the model can categorize statements and questions from 

a set of sentences that are different from the training set. By default, it uses the generalized 

weights that the model has learned from training, as shown in Figure 10, in order to test how well 

the model generalizes to new tokens. However, if the user wants to find out whether another set 

of generalized weights would yield better performance, these weights can be adjusted and then 

the user can retest the model without retraining it. In this case, since the model did not learn the 

user-adjusted generalized weights, the test results are only meaningful in what-if analyses. 

 

 

Figure 10: The parameter setting window for the testing function 

2.2.6 Cross-validation 

Cross-validation (Refaeilzadeh, Tang, & Liu 2009) is an approach to training and testing the 

model which tries to avoid overfitting the model such that it only recognizes the specifics of the 

data structure and fails to recognize the general structure. For example, some varieties of English 

express statements with a high rising terminal or uptalk intonation (Ladd 2008; Warren 2016). If 

none of the trained tokens that were presented to the model had the uptalk pattern, the model 

would generalize that all statements in English end with a falling intonation. Then, when the 

model encounters a token with uptalk in testing, it would fail to recognize that the token is a 

statement. Cross-validation attempts to avoid such over-specificity in the model through multiple 

training-and-test runs. In each run, a subset of the tokens serves as training data. The particular 

tokens used as training data rotate with each iteration of training in cross-validation, however, 

thus enabling the model to have eventually experienced all tokens as training tokens across the 

multiple runs. Similarly, cross-validation ensures that each token is tested once and only once 

across multiple runs. The average score across all runs is taken as a measure of how well the 

model has generalized to the tokens’ intonation patterns. 



 

 

 

11 

3 Experiment 

3.1 Goals 

We trained and tested the model to find out 1) how well the model can learn to categorize 

statements and echo questions in English and 2) how sensitive the model is to the auditory 

properties (timing, direction, and speed) in distinguishing between statements and echo questions. 

3.2 Methods 

3.2.1 Speakers 

Sixteen native speakers of Canadian English (8 male, 8 female, aged 18–23 years) produced the 

speech data that were used in this project. Participants were recruited from the University of 

Calgary’s Introduction to Linguistics course and through flyers posted at the University of 

Calgary. They reported no visual, hearing, or speech impairments. 

3.2.2 Materials 

The speech data were recorded by the first author at the University of Calgary as part of the 

language corpus she developed for her graduate research there. This corpus includes 20 unique 

pairs of English statements and echo questions, produced by the 16 Canadian English speakers. 

Each paired statement and question were syntactically and lexically identical (e.g., ‘Ann is a 

teacher. Ann is a teacher?’). Each speaker read the 20 pairs of sentences twice. The utterances 

were recorded in a sound-attenuated booth with high-quality recording equipment at a sampling 

rate of 44.1 kHz in a 16-bit mono channel and were saved to .wav files. 

 From this corpus, two speakers (one male, one female) were randomly selected from the 

subgroup of eight Canadian English speakers who were of 18 years of age. We chose younger 

speakers because they tend to use uptalk more (Sando 2009; Shokeir 2008), and felt that it would 

provide the model with a meaningful challenge to find out how well it could handle uptalk. These 

speakers originally produced 80 pairs of recorded sentences (2 speakers x 20 unique pairs of 

sentences x 2 readings). However, 16 of these pairs were excluded from the training and test data 

because Praat was unable to track the F0 values of some part of these sentences due to creaky 

voice. 

3.2.3 Training 

The initial weights (IWs) of the auditory properties can affect the model’s success in finding an 

optimal set of generalized weights. Hypothetically, if the model begins training with 100% 

weight on timing and 0% weight on direction and speed, and it reaches the target learning rate 

before the other two auditory properties have an opportunity to gain some weight, we would not 

know if these two auditory properties matter in categorizing the sentences. Therefore, we trained 

the model with four different sets of initial weights, as listed in Table 1.  

 Additionally, how well the model generalizes depends largely on the training and test tokens. 

For example, if the training tokens have typical intonation patterns but the test tokens have 

atypical patterns, then the model would not generalize well and would likely perform poorly 

during testing. So, for each set of initial weights, the model was trained and tested 10 times. The 

training and test data were randomly selected each time. (In this initial experiment, we did not use 

cross-validation in order to find out how well the model would perform on each independent run.) 
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Table 1: Initial weights of the auditory properties for each set of IWs 

 
Initial Weights 

IW Set Timing Direction Speed 

T-100 100 0 0 

D-100 0 100 0 

S-100 0 0 100 

TDS-50 50 50 50 

 

For each run, 90% of the tokens were used for training. Training ceased when the accuracy rate in 

categorizing statements and questions (i.e., the learning rate) reached 70% or when the number of 

adjustments to an auditory property (i.e., maximum epochs) reached 11. The amount of 

adjustment to an auditory property during the weight distribution process was set to 10%. 

3.2.4 Testing 

For each of the 40 test runs (4 sets of initial weights x 10 runs), the model applied the set of 

generalized weights that was learned from training in the current run to the categorization of the 

remaining 10% of untrained tokens. 

3.3 Results 

3.3.1 Generalized Weights 

Table 2 lists the mean, standard deviation (SD), and range – across all ten runs – of the 

generalized weights that the model came up with through training, with each set of initial 

weights. The strength of the direction cue is evident in the amount of weight shifted towards this 

cue through training. When the initial weight of direction was 100%, this weight remained at 

100%. When the initial weight of direction was less than 100%, this weight increased. In contrast, 

speed does not appear to provide a strong cue to sentence type. When the initial weight of speed 

was 0%, this weight remained at 0%. When the initial weight of speed was greater than 0%, this 

weight decreased. On the other hand, timing appears to provide a stronger cue than speed but a 

weaker cue than direction. When the initial weight of timing was greater than 0%, this weight 

decreased. When the initial weight of timing was 0%, this weight increased only when the initial 

weight of direction was less than 100%; otherwise, this weight remained at 0%.  

Table 2: Mean (SD, range) of the generalized weights resulting from training 

with each of the four sets of IWs 

 
Generalized Weights (%) 

IW Set Timing Direction Speed 

T-100 44 (33.7,  0–100) 11 (3.2,   10–20) 0 (0.0,    0–0) 

D-100 0 (0.0,    0–0) 100 (0.0,   100–100) 0 (0.0,    0–0) 

S-100 13 (13.4,  0–30) 79 (30.3,  0–100) 92 (13.2,  60–100) 

TDS-50 19 (24.7,  0–80) 80 (21.1,  40–100) 36 (9.7,    20–50) 
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3.3.2 Categorization of Sentence Types 

 

Figure 11: Correct categorization of statements and echo questions for each set of initial weights, averaged 

across ten runs 

Figure 11 displays the mean percentage of statements and echo questions correctly categorized 

during training and testing over all ten runs. The differences between the training and test results 

are within 1.8–2.5%, indicating fairly consistent performances between training and testing. For 

all four sets of IWs, the model correctly categorized the two sentence types above 60%. It 

performed the best at 92.9% when IW was D-100. It performed the second best at 77.9% when 

IW was T-100. It performed the worst at 60.7% when IW was S-100. It performed slightly better 

at 71.4% when IW was TDS-50. (See Table 2 for the generalized weights resulting from using 

these IWs.) These results indicate that the model performed best when the most weight was 

placed on direction coupled with the least weight on speed. This finding is consistent with the 

preference for direction and the lack of preference for speed that were discussed in Section 3.3.1. 

 Table 3 lists the mean of correct categorization scores, along with the standard deviation (SD) 

and range for each set of initial weights. Testing reveals a wider range of scores than training, 

partly due to the 70% accuracy criterion placed on training. Also, there could be test tokens with 

unexpected patterns that the model could not handle well. The standard deviation is the smallest 

when IW was D-100, followed by TDS-50, then S-100, and finally T-100. 

Table 3: Mean (SD, range) of correct categorization when trained with each of the four sets of IW 

 
Correct Categorization of Statements and Questions (%) 

IW Set Training Testing 

T-100 76.1  (10.6,   70.1–96.5) 77.9  (12.3,   64.3–100.0) 

D-100 96.5  (0.6,     95.6–97.4) 92.9  (4.8,     85.7–100.0) 

S-100 67.4  (2.7,     64.0–70.2) 60.7  (12.7,   35.7–78.6) 

TDS-50 68.9  (2.2,     64.9–72.8) 71.4  (8.9,     57.1–85.7) 
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With the initial weights set at T-100 or D-100, all ten runs reached the target learning rate of 70% 

during training. However, with the initial weights set at S-100, seven out of the ten runs did not 

reach this threshold in training, and only three runs did (64.0–69.3% vs. 70.2%). Interestingly, the 

seven runs that failed to reach the training performance criterion performed better than those 

remaining three runs in testing (64.3–78.6% vs. 35.7–50%). Similarly, with the initial weights set 

at TDS-50, six out of the ten runs did not reach the target learning rate of 70% during training, 

while only four runs did (64.9–69.3% vs. 70.2–72.8%). As above, the six runs that failed to reach 

the training criterion performed slightly better than the other four runs in testing (64.3–85.7% vs. 

57.1–78.6%). This means that when the initial weight of speed was equal to or greater than both 

timing and direction, it took longer (or requires more epochs) for the model to derive a best-

fitting set of weights for the training data. 

4 Conclusion 

This research project investigated whether an exemplar-based model could learn to categorize 

statements and echo questions in English, based on intonation alone. We created a computational 

model that learned to categorize English statements and echo questions by comparing the 

similarity of new tokens to previously classified tokens that were stored as exemplars in memory. 

To determine the auditory similarity between two sentences, the model used three properties: 

1) the relative timing of the nuclear tone in the sentence, 2) the direction of the post-nuclear 

intonation contour, and 3) the speed at which the post-nuclear intonation contour rises or falls. 

The model was presented with 64 pairs of sentences that were produced by one male and one 

female speaker of Canadian English, but the F0 contours of these sentences were not normalized 

for each speaker prior to training and testing. The highest-performing version of the model 

correctly categorized up to 92% of the unheard sentences presented in testing, averaged across ten 

training-and-test runs. This preliminary experimental result demonstrates that it is feasible to 

develop an exemplar-based computational model that can learn to categorize statements and echo 

questions in English, without normalizing F0 to account for speaker variability. 

 However, much of the model’s performance in testing depended on the specific properties of 

the sentences that were tested and the generalized weights that were assigned to those properties. 

The model performed the best when it focused all of its attention on the direction auditory 

property. It is interesting to think that this exemplar-based model – which does not filter out any 

information in its representation of speech exemplars in memory – can develop behaviour where 

it ignores potentially useful acoustic cues and focuses on only one, crucial property of the signal 

in perception. 

We see a number of fruitful opportunities for future research that can expand upon this initial, 

promising result. First of all, in order to determine whether exemplar theory could provide a 

realistic account for the human perception of intonation, it would be necessary to conduct a 

similar identification task of statements and echo questions on human listeners and then compare 

the human performance with the model’s performance. Secondly, it would be practical to include 

more speakers in order to increase the variability of the test sentences for the model. Thirdly, the 

model should also include other auditory properties or more detailed acoustic information in its 

similarity calculations, such as F0 height, to see if they would affect the model’s performance. 

Lastly, it would be insightful to explicitly test this model on uptalk intonation to see how well it 

can generalize between statements with and without uptalk, and also distinguish between the 

similar intonation patterns of uptalk statements and echo questions. 
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