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Abstract: This project examines a corpus of child-directed Sesotho speech in order to gauge how adequate
transitional probability (TP) between units of sound is for predicting word boundaries and word-internal
morpheme boundaries. The predictor is the likelihood of some phonological unit, a segment or syllable,
given either the preceding or following unit, i.e. the (forward or backward) transitional probability of
those two units. I conclude that transitional probability between adjacent segments and between adjacent
syllables is not useful as a predictor of boundaries in Sesotho.
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1 Introduction

Several models of word segmentation in first language acquisition are based on using the probability
of phonological sequences as a predictor. For example, Saffran et al. (1996a) argue that children can
segment words out of the speech stream based on the likelihood of a syllable or segment sequence.
If transitional probability is a reliable way for children who are acquiring their first language to
segment the speech stream, then there should be an observable trend in real language data such that
better than chance predictions can be made about boundary-hood based on TP; this has been demon-
strated using computational modeling for some languages by Daland and Pierrehumbert (2011).

The situation modeled by this examination is that of an infant attempting to posit boundaries
between units of speech sounds. An infant learner has access to a wide variety of stimuli that are
relevant in this task; however, in this model we abstract away from meaning and just examine what
contribution can be made by simply paying attention to the distribution of sounds (specifically,
syllables and segments) in the speech stream.

Sesotho is a Bantu language spoken by about 6 million people in Lesotho and South Africa
(Lewis et al. 2013). It was chosen as the language of investigation because of the simple syllable
inventory, high ratio of morphemes per word and availability of relevant data. The large number of
polymorphemic words facilitates investigation of not only word boundaries, but also word-internal
morpheme boundaries.! The particular corpus used in this paper, Katherine Demuth’s Sesotho
CHILDES corpus (Demuth 1992), is ideal for morphological and phonological analysis as it con-
tains both morpheme glosses and a phonemictranscription.

This project contributes to two areas that have not been developed in phonological learning.
Because Sesotho has many poly-morphemic words, this project examines not only the traditional
word boundary identification, but also morpheme boundary identification. Since some experimental
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work has demonstrated that both forward and backward transitional probability are available to
learners in parsing (Pelucchi et al. 2009; Saffran et al. 1996b), this project examines both measures
as predictors of boundary-hood.

The paper is organized as follows. In the next section I present background information on
transitional probabilities (Section 2.1), how they have been used in artificial language learning tasks
(Section 2.2), and an overview of Sesotho (Section 2.3). Section 2 closes with a summary of the
predictions made about the Sesotho corpus (Section 2.4). In Section 3, I describe the corpus used
in this study (Section 3.1), and report the findings of the study (Section 3.2). In Section 4, I discuss
the results, and in Section 5 I offer concluding remarks.

2 Background

Children who are learning their first language must learn which sound sequences co-occur with
which meanings and map those two elements together as a ‘word’. Correctly identifying where a
unit of meaning begins and ends in the speech stream is part of this challenge. Children must posit
boundaries in long strings of inflectional morphemes which are part of the same word; this raises
the question of how informative TPs are in identifying boundaries found between words (referred
to as word boundaries in this paper) and the boundaries found between the subparts of a word
(referred to as morpheme boundaries in this paper). This paper is concerned with the question of
whether children could use information about the sound patterns in natural language to predict word
boundaries and word-internal morpheme boundaries; this approach does not take into account any
of the meaning associated with these units.

The rest of this section is organized as follows: Section 2.1 provides an explanation of how TPs
could be used in language learning and how they are computed. Section 2.2 provides an example of a
laboratory experiment which demonstrates that infants are sensitive to differences in TP. Section 2.3
provides information about the corpus, what is included in it, the segments and syllables observed
in it, and the distribution of TPs in it.

2.1 Statistical Learning

One possible approach to boundary identification comes from using transitional probability between
units (such as segments or syllables) as a way to determine where boundaries should be placed
(Harris 1955, 1967; Saffran et al. 1996b). It has been claimed that identifying a TP as low relative
to some other TP or set of TPs is a viable way to guess between which syllables a boundary should
be placed. Specifically, segments with low transitional probability have a high likelihood to occur
across a word boundary (Harris 1955). This idea follows from the observation that sequences of
segments in a language like English are not equally distributed within words compared to across
words. Specifically, there is a much smaller possible set of sequences within a word than across two
words. This means that sequences across words are harder to predict; these sequences have lower
probability. This approach to statistical learning has yielded positive results for some languages
(Daland 2009; Daland and Zuraw 2013); however, it is not clear that TPs will relate to boundaries
in the same way for all languages.

The transitional probability (TP) between two units X and Y is the probability of observing one
given the other. Mathematically, it is equivalent to conditional probability: p(Y|X), which can be
read as ‘the probability of Y given X’. In other words, p(Y|X) is the forward transitional probabil-
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ity of XY. The backward transition probability of a sequence XY is equivalent to the conditional
probability p(X|Y), the probability of X given Y.

(1) a. Forward transitional probability

_ p(XY)
p(Y|X) = PX)

b. Backward transitional probability
p(X|y) =25

In this study, the sequence XY stands for a sequence of adjacent segments, such as [@, aj], or
a sequence of adjacent syllables, such as [@a, tho]. As illustration, consider the computation of
TP for two segments. To compute the transitional probability of two segments, [@, a], we first
count the number of times the sequence ‘tha’ occurs in the corpus in order to find the probability of

the sequence:

# of Ha bigrams
2) p(tha) = total # of bigrams

We then count how often ‘i’ occurs as the first member of a bigram and how often ‘a’ occurs
as the second member of a bigram and compute their probabilities so that we can later find both the
forward and backward TP of the sequence [t1, a]:

~ # of ti bigrams

(3) a pt)= total # of bigrams
# of _a bigrams

b. p(a)= total # of bigrams

Finally, we can plug in the values for p(tta), p(t ), and p(_a) into the equations in (1):

(4) a. Forward transitional probability of [E, aj

2 tla)
p(alfi) = 28
(altt) R

b. Backward transitional probability of [ﬁ, a]

ti
p(tia) = 2EY

2.2 Artificial Language Learning

Following the logic laid out above, Saffran et al. (1996a) asked if infants could use distinctions in
TP to segment words out of a sequence of syllables. While most computational approaches to mor-
phological segmentation use phonemes or phones as the basic unit of processing, there is evidence
that suggests infants first perceive syllables (Bertoncini 1981; Bijeljac-Babic et al. 1993). Therefore,
there is some merit to investigating this claim using syllables as basic units of discernibility.
Saffran et al. (1996a) constructed a lexicon of four three-syllable words and then concatenated
these words into a speech stream composed such that the forward transitional probabilities between
any two syllables within a word are much higher than between any two words (Forward TP between
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syllables within a word = 1.0; Forward TP between syllables across a word boundary = 0.33).
Consider the example below, constructed with the same principles.

(5) Sample Words
to.ki.bu gi.ko.ba
go.pila ti.po.lu

(6) Sample speech stream
tokibugikobagopilatipolutokibugopilatipolutokibugikobagopilagikobatokibugopilatipo
lugikobatipolugikobatipolugopilatipolutokibugopilatipolutokibugopilatipolutokibugopi
lagikobatipolutokibugopilagikobatipolugikobatipolugikobatipolutokibugikobagopilatipo
lugikobatokibugopilatokibugikobagopilatokibu

In the sample above, the sequence bugiko, composed of syllables from two words in the lexicon
(to.ki.bu#gi.ko.ba), is referred to as a part-word.

Saffran et al. (1996a) found that infants listened longer to part-words (like bugiko) than to
the statistically defined words after being exposed to a speech stream. If the part-words count as
different from the words, then the infant must be sensitive to the TPs.

Both forward and backward TPs have been shown to be relevant. Pelucchi et al. (2009) demon-
strate that children are able to discern between words and part-words only based on backward tran-
sitional probability. As Pelucchi et al. (2009) discuss, backward transitional probability is more
informative than forward transitional probability in several situations. For instance, when consid-
ering TPs between morphemes in languages where determiners precede nouns and there is gender
agreement between determiners and nouns (e.g. Spanish), the noun is an excellent predictor of the
determiner since it predicts the gender.

With respect to Sesotho, backwards transitional probability could be more informative due to
the templatic morphology of the language. Both nouns and verbs are constructed with monosyllabic
prefixes which occur before roots. Because these prefixes are drawn from a small class of concoor-
dial morphemes, they are more predictable from the perspective of the root, which is drawn from a
large open class, than the root is from the perspective of the prefix. This means that backward TP
will be higher for these sequences than forward TP would be.

Since higher TP relative to other bigrams is associated with a bigram existing within a single
domain, such as within a morpheme, the sequences that contain a root and prefix will be less dis-
tinct from sequences that occur within a single morpheme in terms of backward TP. Therefore, the
forward TP of such sequences will be less similar to the TP of sequences within a word (but more
similar to across-word sequences). Under the assumption that there is a larger gap between the TPs
of across-word sequences and across-morpheme sequences than the TPs of across-morpheme and
within-morpheme sequences, then the forward TP will be the most distinct predictor of within word
morpheme boundaries.

Because many prefixes are monosyllabic, it should be the case that syllabic bigrams are useful
in predicting morpheme boundaries. However, there are reasons to believe that segmental bigrams
will fare better; these are discussed in Section 2.3, below.
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2.3 Sesotho

Sesotho is spoken in South Africa and Lesotho by about six million people. It has many features
found in other Bantu languages, such as extensive concordial morphology which appears on both
verbs and nouns.

All of the data used in this investigation is drawn from Demuth (1992)’s corpus. The corpus
was accessed through the CHILDES database. This corpus contains ninety-eight transcribed hours
of interaction focused on four children acquiring Sesotho in Lesotho. In addition to the target
learners, the database has transcribed and glossed utterances from adults. The utterances of adults
are selected for use in this study as child directed speech. Adults include parents, grandparents and
teen-aged siblings. Concretely, a filter was used to select only utterances produced by speakers with
the following tags: ‘Adult’, ‘Grandmother’, ‘Mother’, ‘Father’, ‘Uncle’, “Teenager’. Playmates and
target children are excluded on the assumption that their productions are not fully adult-like. It is
assumed that this is representative of the input that a first language learner of Sesotho might have.
The resulting corpus had 16,941 utterances containing a total of 199,551 segments of 41 types;
188,005 segmental bigrams; 130,050 syllables of 188 types; and 94,994 syllabic bigrams.

The corpus is transcribed into Sesotho orthography, which is largely phonemic. The Sesotho
orthography does not encode the full range of vowel distinctions. This is unfortunate because vowel
harmony is entirely obscured in the orthographic rendering of Sesotho as [+ATR] is collapsed
into a single symbol (i.e., orthographic <e> maps to [e] and [¢], <o> maps to [0] and [o0], <i>
maps to [i] and [1], and <u> maps to [u] and [uv]); see Section 4 for a discussion of how vowel
harmony and morphological structure could be relevant to the predictive power of TPs. Similarly,
the transcription does not encode tone. Finally, vowel length is not represented in the orthography,
but is largely predictable in Sesotho. Specifically, penultimate vowels generally become lengthened.
While this could be coded back into the data, the regularity of penultimate lengthening is not known
and therefore left unmarked.?

Table 1 lays out the phone inventory of Sesotho (following Doke and Mofokeng (1957) and
Demuth (1983) for phonemes) which includes all surface segments found in the corpus.

Sesotho has five possible syllable shapes: CV, V, N, C"V, and L (Doke and Mofokeng 1957).
Most syllables have a consonant as the onset and a vowel as the nucleus: CV. Syllables may or may
not have an onset. Onset consonants may be labialized. No syllable has a coda. Nasals and liquids
can act as nuclei, but syllables with nasal or liquid nuclei cannot have onsets. The inventory of
syllable shapes is shown below along with examples illustrating each syllable type in an utterance.
The counts and percentages are reported for the utterances included in this analysis; the corpus
analysed here contained 130,050 syllables.

(7)  Sesotho syllable shapes (with frequency and count)

Type % of total syllables Count
Ccv 65.3 84,860
\" 20.1 27,283
N (syllabic nasal) 10.9 14,208
cvv 2.3 3,052
L (syllabic liquid) 0.5 647

2See Zerbian (2007) for a study on the contexts in which penultimate lengthening applies.
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a. ere m.phe ntho ena b. tisa k¥ano
V.CV N.CV N.CV V.CV CV.CV C"V.CV
‘Say: give me this thing’ ‘Bring it here’

c. ose.a.lo.letella are.fe.e.la Llo

V.CV.V.V.CV.CV.CVL.CV V.CV.CV.VCV L.CV
"He is going to end up just saying /lo’

Table 1: Sesotho phone inventory

(a) Consonant inventory

Labial Alveolar Lateral Postalveolar Velar Glottal

Click 10
th

Stop pb td kg

h ¢h Kh
Nasal m n n |
Fricatives fv SZ { I3 X h
Affricates ts i a kx

is gh

Approximant w 1 ]
Trill R

(b) Vowel inventory

Front Mid Back

High i u
Mid e 0
Low a

Consider the example below; because the vowel, [6], occurs word initially, we know that it is
its own syllable. Since Sesotho does not allow codas, the segment [t}] is parsed as the onset of
the syllable [t4]. The next syllable, [mo] readily fits the template of CV syllables, as do [ré], [ké]
and [la].?

(8) Sesotho Verb Demuth (2007)
6-  Ha- mo- rék -él  -a
1ISM- FUT- 10M- buy -BEN -IN
‘He will buy food for someone.’

3The morpheme glosses in the example are as follows: 1SM: Noun class 1 subject marker, FUT: future tense
marker, 10M: noun class 1 object marker,BEN: benefactive marker, IN: indicative mood marker.
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The example above is a single word of Sesotho. It contains six morphemes: the first person sub-
ject marker (SM1) [6-], the future tense marker (FUT) [ﬁé—], the first person object marker (OM1)
[mo-], the verb root meaning to buy [rék], the benefactive mood marker (BEN) [-€l] and the final
vowel [-a]. Of particular note is the mismatch between morpheme boundaries and syllable bound-
aries. Consider the two representations of (8) below.

(9) Morpheme break: [o—ﬁa—mo—rek—el—a]
Syllable break: [o.tta.mo.re.ke.la]

The first three morpheme boundaries, [o—aa—mo—] coincide with syllable boundaries. However,
the last two morpheme boundaries, [rek-el-a] do not. Morpheme boundaries like the last three are
undetectable to a learner that considers syllables as the basic unit of analysis.

The example above is drawn from a class of cases which cannot be correctly predicted by using
syllables as the basic unit of analysis. There are many CVC verb roots, such as ‘rek’ which combine
with morphemes that are simply a vowel to form two syllables. However, since the morpheme
boundary always exists between an onset and its coda, it cannot be found by examining the TP
between two syllables.

Out of 158,380 total morpheme boundaries, 67,821 coincide with syllable boundaries. This
means that 67,821 morpheme boundaries can be detected using a syllabic parse as counted in the
corpus used for this study. The morpheme boundaries which cannot be detected include the bound-
aries following CVC- verb roots as well as any other morphemes which do not align with syllable
boundaries.

In contrast, it is assumed that all word boundaries are syllable boundaries.* Therefore, the
syllabic bigram model has the potential to correctly predict the existence of every word boundary.
The segmental bigram model can do better at predicting morpheme boundaries because is has access
to every possible morpheme boundary.

The distribution of transitional probabilities by the boundary over which they occur is shown in
the four panels of the figure below. These graphs display the counts for each bigram token sorted
by its transitional probability and coded by the boundary over which it occurs; they are displayed as
stacked histograms where the height of a column indicates the total number of bigrams which have
that TP. In these figures, ‘x-morph’ stands for a token of a bigram which occurs over a morpheme
boundary, ‘x-word’ stands for a token of a bigram which occurs over a word boundary, and ‘in
morph’ stands for a token of a bigram which does not occur over any boundary.

4Since Sesotho lacks syllables with codas, it is not possible for a coda to be syllabified as an onset. Liquids and
nasals which act as nuclei could become the onset of otherwise onsetless syllables across a word boundary;
however, this process is not attested in the literature regarding Sesotho phonology.
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Figure 1: Histograms of forward and backward TP for syllabic bigrams and segmental bigrams
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The following charts give the average TP for each category for the unit type; recall that the
range for TP is between 0 and 1.

(10) a. Average TP by boundary type for syllabic bigrams
Forward TP Backward TP

In morph  0.133 0.090
X-morph  0.045 0.070
X-word  0.040 0.039

b. Average TP by boundary type for segmental bigrams
Forward TP Backward TP

In morph  0.244 0.142
X-morph  0.172 0.145
X-word  0.050 0.200

In general, most bigrams have low transitional probability. In the two charts above, none of the
average TPs are above .244, which is in the lower quarter of the possible range. Bigrams that contain
two units within a morpheme have the widest distribution of TPs. Considering syllabic bigrams,
there is not a clear distinction between the TPs of bigrams that contain morpheme boundaries and
the TPs of bigrams that contain word boundaries, the average TP chart clearly supports this for
forward TP. Considering segmental bigrams, bigrams that occur across a morpheme have slightly
higher maximum TPs than bigrams that occur across word boundaries; however, the distributions
largely overlap.

These observations run counter to our expectations. Word-internal sequences were predicted
to have higher TPs than both cross-morpheme and cross-word bigrams. Cross-morpheme bigrams
were predicted to have higher TPs than cross-word bigrams. The second expectation is arguably
met by the segmental bigrams. Note that our prediction about the backward TP of cross-morpheme
bigrams being more similar to the TP of within morpheme bigrams compared to forward TP is borne
out by the average TPs.

2.4 Prediction Summary

In the preceding section we have seen that there are several facts about Sesotho which lead us to
predict that different directionality and units will be more or less useful in deriving boundaries from
transitional probability. This section summarizes these predictions.

Because syllable boundaries do not always align with morpheme boundaries, we predict that
segmental bigrams will be more useful in predicting within-word morpheme boundaries. Because of
the prefixing inflectional morphology of Sesotho, we predict that backwards transitional probability
will be more useful in predicting within-word morpheme boundaries.

The null hypothesis is that transitional probability has no predictive value for the presence of
either word or morpheme boundaries. In other words, TPs are as informative as randomly deciding
if a bigram contains a boundary or not. Therefore, under the null hypothesis, we do not expect
differences to arise from unit of analysis either. Furthermore, there should not be any difference
between the predictive value of forward and backward TP.
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3 Method and Results

This study considers the predictions a learner could make about the existence of word and mor-
pheme boundaries from observing the transitional probability between units of sound, specifically
the transitional probabilities between adjacent segments and the transitional probabilities between
syllables. By focusing on the data we are able to determine how accurate and precise an idealized
learner could be in their predictions about boundaries. In the following two subsections I lay out
how the evaluation models were constructed and then analyze the results of the models.

3.1 Data

The models described in this section fall into two broad classes that define the unit of analysis:
syllabic bigrams and segmental bigrams. Though both models share the same basic components,
the syllabic models also rely on syllabification of the Sesotho corpus.

The Sesotho corpus includes morphological segmentation, but does not include syllabification.
Each utterance is represented by a string of letters each of which uniquely represents a single phone
of Sesotho or one of the two boundaries under consideration. For instance, the segment [ph] is
encoded as ‘P’, while the segment [p] is encoded as ‘p’. Recall from (7) that Sesotho has five syllable
shapes: CV, V, N, C"V, and L. The corpus was automatically syllabified as follows: beginning from
left and moving rightward through each utterance, the first segment was checked. If the first segment
was a single vowel, it was syllabified as a V syllable. If the first segment was a nasal or liquid, the
following segment was checked. If the following segment was another consonant, the nasal or
liquid was syllabified as a syllabic segment; if the following segment was a vowel the sequence
was syllabified as NV or LV. It is not expected that a nasal or liquid can act as a labialized onset.
The syllabification algorithm includes a check in case such sequences are found; however, there
were none. If the first segment was a consonant other than a nasal or liquid, the second segment
was checked. If the second segment was a ‘w’, the next segment was checked. If that segment
was a vowel, all three segments were syllabified as a C'V syllable. Finally, if the first segment
was a consonant and was not followed by a ‘w’ but instead followed by a vowel, the sequence was
syllabified as a CV syllable. The syllabification algorithm then went on to the next unsyllabified
segment, repeating the process described above until no more segments remained in the utterance.

For the segmental bigram models, the database was scanned with a two segment window in or-
der to extract the bigrams.? Every bigram was recorded as well as the bigram context it occurred in:
within a morpheme (not over any boundary), over a morpheme boundary, or over a word boundary.
The same process was applied to the syllabified corpus, however the bigrams were composed of
two syllables. The resulting dataset is the testing data for the experiment; it contained each bigram
token along with the forward, and backward TP as well as coding for the presence or absence of
word and morpheme boundaries.

The examples below illustrate a sample utterance from the corpus along with the computed
transitional probabilities. Under the utterance in (11a), are the syllabic bigrams it contains; un-
der the utterance in (11b) the segmental bigrams it contains. Under the bigrams are their forward
and backward transitional probabilities. The presence of a morpheme boundary is indicated by a
dash, ‘-’; the presence of a word boundary is indicated by a hash mark, ‘#’; bigrams are given in
square brackets with a comma separating the two units of the bigram. Boundaries that occur within
a syllable are not shown.

>Labialized onsets were treated as two segments, a consonant followed by a glide.
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(11) a. u-r-e#u-lo-rek-a-y

Syllabic bigrams: [u, -re] [re,#u] [u,-lo] [lo,-re] [re,ka] [ka, -]
Forward TP: 0.036  0.082 0.001  0.006 0.015 0.013
Backward TP: 0.121  0.024 0.005  0.006 0.009  0.005

b. u-r-e#u-lo-rek-a-y
Segmental bigrams: [u, -r] [r-e] [e,#u] [u,-1]] [Lo] [o,-r] [, €]
Forward TP: 0.049 0.673 0.046 0.060 0.15 0.035 0.673
Backward TP: 0.138 0.060 0.188 0.051 0.09 0.197 0.060
Segmental bigrams: le,k] [k,-a] [a, -]
Forward TP: 0.070 0.383 0.101
Backward TP: 0.233 0.116  0.682

The segmental bigram [r, e] is repeated twice in the utterance. Because TP is computed over the
whole corpus, the measure for any instance of a bigram will have the same TP as another instance
even though some instances occur over a boundary and some do not.

In order to model the relationship between transitional probability and segmentation, a set of
categorizers was created. The categorizers are simple predictive algorithms that return categorical
predictions about some variable based on an input variable. In this case, the algorithm attempts
to make predictions about a boundary (presence of a morpheme boundary, presence of a word
boundary) using transitional probability (forward TP, backward TP).

Creating the categorizer was done by using logistic regression in the R Software package and
glm() function (R Core Team 2014). This function fits generalized linear models. The linear model
maps a TP to the probability of a boundary. The models were given a list of every bigram, that
bigram’s (forward or backward) TP, and if it occurred over a (word or morpheme) boundary. The
model created a function which maps TP to the probability of a boundary. None of the models had
statistically significant fits, indicating that the relationship between the predictor and variable was
not meaningful.

After creating linear models for all eight relationships, the bigram data was fed back into the
model in order to obtain the probability that each bigram would occur over a boundary. These
probabilities were converted into categorical responses; if the probability for a bigram having a
boundary was higher than or equal to 0.50, the model was considered to have predicted a boundary.
If the probability for a bigram having a boundary was lower than 0.50, the model was considered to
have predicted no boundary. These categorical results were then compared to the actual boundaries
for each bigram.

In summary, eight models were created: four models which use syllable bigrams to predict
boundaries and four models which use segmental bigrams. Of the four models for each unit, two
models use forward transitional probability and two use backward transitional probability; of the
models which use forward transitional probability, one predicts word boundaries and one predicts
morpheme boundaries, likewise for the two models which use backward transitional probability.
None of these models had statistically significant relationships between TP and the existence of a
boundary. These eight models are summarized in the chart below. The model names can be read
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as ‘Y predicted from X’; for example, ‘Morph ~ Fwd TP’ is a model that ‘predicts morpheme
boundaries from forward transitional probability’. The next section summarizes the perfor-
mance of each model.

(12) Model summary

Syllabic bigrams Segmental bigrams

Forward ~ Morph~ Syll Fwd TP~ Morph ~ Seg Fwd TP
Word ~ Syll Fwd TP~ Word ~ Seg Fwd TP

Backward Morph ~ Syll Bkwd TP Morph ~ Seg Bkwd TP
Word ~ Syll Bkwd TP Word ~ Seg Bkwd TP

3.2 Results

In this section I present three measures for understanding the models: precision, recall and F-score
(Manning et al. 2009). These measures are common to signal analysis of any type and have been
used extensively to report on learning algorithms.

Precision and recall are measured in terms of hits, misses, correct rejection and false positives.
Hits are correct predictions made by the categorizer in cases where there was a boundary and the
categorizer reported it; misses are incorrect predictions in cases where there was a boundary and
the categorizer reported none. From the perspective of sequences that do not contain a boundary, a
correct rejection is a case when there is no boundary and the categorizer predicts none; likewise, a
false positive is a case when there is no boundary and the categorizer predicts there to be one.

The table below illustrates the predictions of a categorizer compared to the actual data and the
classification of the response.

(13) Sample categorizer results

Prediction Actual Classification

Morpheme Boundary Morpheme Boundary Hit

Morpheme Boundary No Boundary False Positive
No Boundary No Boundary Correct Rejection
No Boundary Morpheme Boundary Miss

Precision measures how likely the categorizer is to identify actual boundaries as opposed to
non-boundaries; it is computed by dividing the number of hits by the sum of the hits and false
positives (i.e. the number of correctly predicted boundaries over the total predicted boundaries):

# of hits
# of false positives

(14) Precision = Folis +

Recall measures how likely the categorizer is to identify all actual boundaries; it is computed by
dividing the number of hits by the sum of the hits and misses (i.e. the number of correctly predicted
boundaries over the total actual boundaries):
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# of hits
ts + # of misses

(15) Recall = 7ol

The best models will balance these two factors, identifying a large number of correct boundaries
but not over predicting sequences that are within a domain. This is measured by the F-score, the
harmonic mean® of precision and recall:

_~ PrecisionxRecall
(16)  F-score = 2Precision + Recall

The F-Score ranges between 0, the worst score, and 100, the best score (because precision and
recall are being reported as percentages); a higher value represents a better result.

In order to to test the null hypothesis, a class of models that randomly predict if a bigram has a
boundary between its members or not was created. These models know how many boundaries there
are, but randomly assign which bigram has a boundary.

Since the distinction between forward and backward TP is not used as a predictor by these
models, we only need to consider the unit of analysis and the boundary type about which a prediction
is being made. This means there are four comparison categorizers to consider: a categorizer that
randomly assigns morpheme boundaries to syllabic bigrams, a categorizer that randomly assigns
word boundaries to syllabic bigrams, a categorizer that randomly assigns morpheme boundaries to
segmental bigrams, and a categorizer that randomly assigns word boundaries to segmental bigrams.

These categorizers are built by generating a random prediction, sampled from a normal distri-
bution between 0 and 1, for each bigram. These numerical values are then turned into categorical
decision in the same way as the categorizers that use TP as a predictor. However, instead of turning
the probability of a bigram containing a boundary into a categorical response, like the categorizers
that use TP as a predictor, the random categorizers select values less than or equal to the probability
of a boundary and convert these into a categorical response indicating a boundary. This means that
these categorizers will posit a boundary for any bigram which was (randomly) assigned a value less
than the probability of a boundary existing in that dataset.

The precision, recall and F-score of these categorizers converges on the probability of a bound-
ary; the probability of a morpheme boundary between syllables is %25. The probability of a word
boundary between syllables is %29. The probability of a morpheme boundary between segments is
%?22. The probability of a word boundary between segments is %16.

The chart below summarizes the precision, recall, and F-score of the four comparison catego-
rizers and eight fitted categorizers in predicting whether a bigram occurs over a boundary using the
transitional probability of the two members of that bigram. The categorizers are separated by unit
of analysis.

_ 2A><B

®Harmonic means are appropriate for taking the mean of two rates. The harmonic mean of AB uwE
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(17) Summary of categorizer performance

a. Syllabic bigrams

Categorizer Precision  Recall F-Score
Morph ~ Random %25.78  %25.70 25.74
Word ~ Random 9%29.01  %?29.13 29.07

Morph ~ Fwd TP %2.57 %42.61 4.85
Word ~ Fwd TP %7.19  %40.21 12.20
Morph ~ Bkwd TP %0 %0 0

Word ~ Bkwd TP %9.07  %50.78 15.39

b. Segmental bigrams

Categorizer Precision = Recall F-Score
Morph ~ Random %21.82  %21.86 21.84
Word ~ Random %16.15 %16.26 16.20
Morph ~ Fwd TP %0.007 %6.0 0.0014

Word ~ Fwd TP %3.56 %24.82 6.22
Morph ~ Bkwd TP %0 %0 0
Word ~ Bkwd TP %0 %0 0

3.3 Overview

F-scores for the categorizers that use TP to predict boundaries range between 0 and 15. In com-
parison to the random models, the categorizers all performed worse with respect to F-score. While
performing poorly, the categorizers that predict boundaries in syllabic bigrams have better F-scores
than those that predict boundaries in segmental bigrams.

It should be noted that three categorizers failed to predict any boundaries. This is reflected in the
F-score of zero of the categorizers that used backward TP of segmental bigrams and the categorizer
that used backward TP of syllabic bigrams to predict morpheme boundaries. Since these models
had zero hits, they had precision and recall of zero, resulting in an F-score of zero.

3.4 Syllabic bigram categorizers

The syllabic bigram categorizers had F-scores ranging between 0 and 15.39; the categorizers that
predicted word boundaries had higher F-scores than the categorizers that predicted morpheme
boundaries. For the categorizers that predicted any boundaries, recall was much higher
than precision.

3.5 Segmental bigram categorizer

The segmental bigram categorizers had F-scores ranging between 0 and 6.22; the categorizers
that predicted word boundaries had higher F-scores than the categorizers that predicted morpheme
boundaries. For the categorizers that predicted any boundaries, recall was much higher
than precision.
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4 Discussion

One of the major contributions of this study is investigating the identification of word-internal mor-
pheme boundaries. Because Sesotho has so many polymorphemic words, it provides a good test
corpus for comparing word boundary identification and morpheme boundary identification. Transi-
tional probability was not found to be a better than random predictor of boundaries by any measure.
The results indicate that transitional probability between bigrams is a better indicator of word bound-
aries than of morpheme boundaries; this is found even when there is a higher number of morpheme
boundaries than word boundaries (segmental bigrams). The TP of syllabic bigrams is a slightly
better predictors of boundaries than the TP of segmental bigrams.

One factor which was thought to create a difference between backward and forward transitional
probability was the order in which affixes are attached to roots’; this follows from the observation
that roots are a much larger class of morphemes and therefore less predictable in contrast to the
smaller set of possible affixal morphemes. In Sesotho, most words contain a string of inflectional
prefixes. All things being equal, the forward and backward TPs between the prefixes will be equiv-
alent. Therefore, we predicted that backwards transitional probability, from the root to the prefixes,
would be higher than forward TP, from the prefixes to the root. This would make morpheme bound-
aries have generally higher backward TP than forward TP, meaning there is a greater distinction
between in-morpheme bigrams and cross morpheme bigrams when considering backward TP as
compared to forward TP. This prediction was not borne out. Backward TP was not a clearer in-
dicator of what type of bigram exists in a bigram. In fact, backward TP was such an ambiguous
indicator that three of the four categorizers which used it as a predictor indicated that all bigrams
lacked any sort of boundary. This would be equivalent to noticing that there are proportionally more
bigrams without boundaries and therefore predicting all bigrams to lack a boundary. In otherwords,
backward TP was a very coarse way to predict the type and existance of boundaries in bigrams.

The categorizers did not perform very well at predicting word boundaries in comparison to other
studies. In a comparable study, Daland (2009) reported models with an F-score of 62.7 for finding
English word boundaries from forward transitional probability between segments. For Russian he
reports an F-score of 58. The chart below summarizes the precision, recall and F-score of these
categorizers.

Note that these categorizers all have higher precision than they do recall; this is the opposite
of our categorizers, which all have higher recall than precision. This fact is related to the ratio of
bigrams with boundaries to those without. When the ratio is low, as in Sesotho, there are fewer total
hits needed since there is a low number of total boundaries to predict.

(18) Comparison of segmental bigram categorizers for word boundaries

Categorizer Precision  Recall F-score
English - Fwd TP (Daland) %874  %48.9 62.7
Russian - Fwd TP (Daland) %95 %40 58
Korean - Fwd TP (Daland&Zuraw) %28 %11 15
Sesotho - Fwd TP %3.56  %24.82 6.22

"The order of words in a phrase also creates a distinction between backward and forward TP.
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Daland and Zuraw (2013) report much less success predicting word boundaries from transi-
tional probability in Korean (F-score = 15). They attribute the shortcomings of their model to the
fact that Korean generally tolerates the same sort of sequences word-internally and across word
boundaries. This is related to the restrictive syllable structure of Korean. The same reasoning holds
for Sesotho; because segmental sequences are largely constrained by the valid syllable types of
Sesotho, segmental bigrams are not uniquely found within a word or across word boundaries, but
rather they are equally likely within words as across word-boundaries.

However, there are other cues which may be informative in languages where segment sequenc-
ing is restricted by syllable shape, such as non-adjacent relationships between segments. Since the
corpus did not encode a contrast between advanced and retracted mid vowels, none of the observed
effects can be based on mid vowel quality. Tongue root harmony in Sesotho acts within words to
make all mid vowels within parts of the word have the same quality, either advanced or retracted.
Therefore, in a more robust dataset, we expect the syllabic bigram models to be improved when
predicting word boundaries; syllables with mid vowels that are not both advanced or both retracted
are less likely to be within a word than those that do agree. We do not expect that segmental bi-
grams would improve. This is due to the fact that when considering two syllables, the difference
in mid vowel quality is inaccessible. However, when considering adjacent segments, this is not
the case. A more nuanced model could include bigrams of adjacent vowels, in essence ignoring
intervening consonants.

5 Conclusion

This paper demonstrates that transitional probability between adjacent segments and between adja-
cent syllables is not useful as a predictor of boundaries in Sesotho. Boundary identification based
on TP is worse in Sesotho than in the worst previously reported study on Korean. Interestingly,
these two languages both have restrictive syllable shapes.

The measures used in this investigation fail to tell us why transitional probability is a poor
predictor in Sesotho. The overlapping distribution of morpheme internal, cross-morpheme and
cross-word bigrams for both segments and syllables contributed to the poor results of using TP
as a predictor.

In order to better investigate the role of phonological units in boundary prediction, a larger
sample of languages must be considered. Important factors identified by this study and previ-
ous work include: morpheme shape, syllable shape, syllable inventory, segment inventory, and
boundary frequency.

In order to investigate the role of directionality in TPs when predicting boundaries, it would
be necessary to know with what frequency each type of bigram is being misclassified and what
it is being classified as. For instance, in order to confirm that higher backward TP between roots
an prefixes results in better distinction between within morpheme and cross morpheme bigrams, it
would be necessary to check the number of cross morpheme bigrams classified as within morpheme
by a categorizer using forward TP versus a categorizer using backward TP.
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