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Abstract: This paper investigates the statistical separability of within-word and between-word seg-
ment transitions in spontaneous speech corpora. Three metrics previously proposed in the litera-
ture, Forward Transitional Probability, Backward Transitional Probability and Mutual Information
are employed to encapsulate the statistical regularities in each corpus that are thought to enable the
separation of these transition types. It has been claimed that infants use such statistical informa-
tion, available to them via a statistical learning mechanism, to segment continuous speech into words
during the first stages of language acquisition. Four corpora are analyzed with results providing evi-
dence that statistical separability of within-word and between-word transitions does exist, to varying
degrees, cross-linguistically. Further, while no one metric consistently affords the most separability,
Mutual Information is generally the most robust.
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1 Introduction

Segmenting continuous speech into discrete, meaningful chunks is foundational for acquiring lan-
guage. However, with no consistent acoustic cues demarcating words in natural speech (Cole and
Jakimik 1980; Lehiste 1960), the mechanisms underpinning word segmentation in infants are not
fully known. Statistical learning, as developed in Saffran, Aslin and Newport’s (1996a) seminal
work, is one possible mechanism which relies on an infant’s ability to extract statistical regular-
ities from stimuli. Speech segmentation based on statistical learning has been seen in infants as
young as 5.5 months (Johnson and Tyler 2010) and has been shown to precede stress patterning,
another known segmentation strategy (Thiessen and Saffran 2003). These findings, however, arise
solely from artificial language learning experiments, which in turn has lead some researchers to
question the effectiveness of statistical learning with more natural language (Johnson and Jusczyk
2001; Johnson and Tyler 2010; Yang 2004). One avenue to address this question is to investigate the
statistical regularities present in natural speech and quantify how useful such information actually is
for the purpose of speech segmentation. To this end, this paper reports on the statistical regularities
in four natural language speech corpora and evaluates their utility for segmenting speech.

To encapsulate the statistical regularities in speech, Saffran et al. (1996a) employ Transitional
Probability – a measure of the likelihood of unit y following unit x in a corpus (speech or oth-
erwise). The authors argue that the tracking of Transitional Probabilities (TPs) allows infants to
delineate words in continuous speech. They state that TPs are, in general, higher for within-word
transitions than between-word transitions, as words are made of units (e.g. segments, syllables) that
regularly occur together. Transitional Probability has been used extensively in the speech segmen-
tation literature (see de la Cruz Pavía (2012) for an overview), has been applied to both segment and
syllable transitions (Daland 2009; Toro et al. 2005), and has been used to identify word-boundaries
in transcribed corpora with limited success (e.g. Swingley 1999).
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A related alternative to TP is the metric of Mutual Information, which calculates the shared
information of adjacent units. Mutual Information (MI) was originally applied to speech segmenta-
tion by Brent (1999a) and is increasingly being used alongside, or in place of, TP in the literature
(Brent 1999b; Daland 2009; Rytting 2004; Swingley 2005). This trend is the result of studies such
as Swingley (1999) and Rytting (2004) that showed MI, as compared to TP, allows for more accurate
word-boundary identification with fewer false word-boundary predictions in English and Modern
Greek corpora, respectively.

The current work uses TP and MI to compare within-word and between-word segment transi-
tions in phonemically-transcribed spontaneous speech. Crucially, this paper reports on the sepa-
rability of the two transition types (within-word, between-word) based on statistical regularities as
encapsulated by these metrics; the work does not consider how accurately the metrics predict word-
boundaries in speech corpora. This was decided as a model of speech segmentation is not necessary
to address the question of the utility of such statistical regularities, separability is sufficient. The
separability of transition types is vital for word segmentation as, if there were no separability, words
could not be delineated by statistical learning. The statistical regularities used are meant to be ana-
logues of regularities arrived at by an infant’s statistical learning mechanism. Finally, as statistical
learning based speech segmentation is not meant to be language specific (Saffran et al. 1996a),
within-word and between-word transitions are compared in four languages. This is done to en-
hance the generalizability of results, to enable inquiry into cross-linguistic patterns, and to provide
a starting point for identifying what ranges of metric values actually exist in natural language.

Details of the corpora and explicit metric definitions with example calculations are provided
first. Next, the methodology of how each corpus was processed and how separability of transi-
tion types was analyzed is reported. Finally, results are presented and their consequences for the
statistical learning based speech segmentation are discussed.

2 Corpora and language choices

Four corpora are used in this study: The Buckeye Corpus of Conversational Speech (BCCS) (Pitt
et al. 2007), the Corpus of Spontaneous Japanese (CSJ) (Maekawa 2003), the Hong Kong Can-
tonese Corpus (HKCC) (Leung and Law 2001) and the Tunisian Arabic Railway Interaction Corpus
(TARIC) (Masmoudi et al. 2014). These corpora contain spontaneous speech from Ohioan English,
Tokyoite Japanese, Hong Kong Cantonese and Tunisian Arabic, respectively. Spontaneous speech
corpora were chosen because the current project is concerned with statistical regularities in natural
speech. Adult speech was chosen over infant-direct speech because infants are likely able to extract
regularities from speech in their surroundings, even if it is not explicitly directed towards them.
Support for this comes from the observation that attention attentuates statistical learning (Toro et al.
2005) and infants are capable of attending to noise in their environment.

As statistical learning based speech segmentation is thought to occur cross-linguistically (Saf-
fran et al. 1996a) and prior to other segmentation strategies (Mattys et al. 2005; Thiessen and Saffran
2003), statistical separability of within-word and between-word transitions is expected across lan-
guages. To scrutinize this, separability is considered in four languages. Languages were selected to
enhance the generalizability of results; that is, they were chosen to ensure variability in linguistic
dimensions that likely affect the regularity of segmental patterning. Table 1 provides a summary of
this variability compiled from language phonologies (Bauer and Benedict 1997; Gibson 1998; Ito
and Mester 1995; Roach 2009).
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Table 1: A summary of the variability between languages

English Cantonese Japanese Tunisian Arabic

Morphological Typology Fusional/Analytic Analytic Agglutinative Fusional

Syllable Maximum CCCVVCCCC CVVC CV{V}{C} CCVCCC

Tone/Accent Lexical Stress Lexical Tone Pitch-Accent Lexical Stress

Phonemic Inventory Cs ≈ 25 Cs ≈ 22 Cs ≈ 17 Cs ≈ 36
Composition Vs ≈ 18 Vs ≈ 13 Vs ≈ 5 ≈ 3

Language Family Indo-European Sino-Tibetan Japonic Semitic

These dimensions were chosen with the following motivations. Morphologically rich languages
(e.g. Japanese) contain many between-morpheme boundaries that may be confusable with between-
word boundaries (as they occur frequently in many different contexts). Restricted syllable phonotat-
ics are correlated with more syllables-per-word (Pellegrino et al. 2011), which may result in lower
metric values for within-word transitions and make them more similar to between-word transitions.
Tone/Accent allows for segmental homophones to be semantically distinct, which may increase the
number of within-word segment transitions, resulting in higher metric values for within-word transi-
tions and making them more separable from between-word transitions. Finally, phonemic inventory
composition affects the number and type of transitions possible (e.g. fewer vowels means an in-
crease in the frequency of transitions containing those vowels), which may result in large variability
of metric values for transition types. If between-word and within-word transitions are separable
cross-linguistically in spite of this variablity, it is reasonable to infer such separability serves an
important function in language.

Other dimensions of language variability likely affect the separability of transition types and
may even better predict language patterning. However, these dimensions provide a reasonable start-
ing point for this preliminary investigation. In future work, more specificity for morphological
system and syllable shape (perhaps average syllable size) may provide better descriptors which tie
into the current analyses.

2.1 Predictions

Considering the variability in Table 1, the following patterns are predicted: Japanese, as a morpho-
logically rich language, will have less separability of transition types than other languages; Can-
tonese, as a tone language, will have more separability of transition types than other languages; and,
English and Cantonese will pattern together in some way and Japanese and Tunisian Arabic will
pattern together in some way given their more similar phonemic inventory compositions.

3 Metrics

Two instantiations of Transitional Probability (Forward and Backward) and one of Mutual Infor-
mation are used herein. Forward Transitional Probability (FTP) is a measure of the likelihood that
a unit y will follow a given preceding unit x. Backward Transitional Probability (BTP) is a mea-
sure of the likelihood that a unit x will precede a given following unit y. It is important to note
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that while the direction of transition differs, the function of the metrics for the purpose of speech
segmentation is the same. Recall that it is the tracking of TPs which is thought to enable speech
segmentation – between-word transitions, in general, should have lower TPs than within-word TPs
(Saffran et al. 1996a) – and FTPs and BTPs are similarly trackable. In this paper, the units used are
either monophones or diphones.

Unlike TP, Mutual Information is not a measure of the probability of one unit transitioning
to/from another; it is a measure of the shared information between units in an Information-Theoretic
sense and is often reported as bits of information (Swingley 2005). A detailed understanding of
Information Theory (Shannon 1948) is not necessary here; for our purposes, MI is interpretable as a
measure of the dependency two units have on each other (i.e. how frequently they occur together). In
this way, MI should, in general, be higher for within-word transitions than between-word transitions.
This parallel to TP entails that MI values can be tracked in much the same way. Formal definitions
of the three metrics are provided in Figure 1.

FTP(xy) = FTP(y|x) = p(xy)
p(x_) BTP(xy) = BTP(x|y) = p(xy)

p(y_) MI(xy) = log2
p(xy)

p(x_)p(y_)
(Saffran et al. 1996b) (Perruchet and Desaulty 2008) (Brent 1999a)

Figure 1: Formulas
for FTP, BTP and

MI

It is worthwhile to compare these metrics as they are all commonly used in the literature and
there is an on-going discussion of which is most effective. While there is a contrast in numerical
units (probability and bits), the separability of within-word and between-word transitions that each
metric affords is quantifiable and therefore directly comparable. As MI incorporates parts of both
FTP and BTP, it will naturally share in the successes and failures of each of them. This may seem
to make MI redundant, however the interaction actually provides MI with a unique behaviour that
is not captured by simply considering FTP and BTP.

3.1 Calculation examples

For each metric, x and y can be any unit and thus are definable by the user. If we consider the
sentence in (1) as a speech corpus, one could calculate the BTP for the transition between the
segments /D/ and /@/ in the following way.

(1) /D.@.k.w.I.k.b.ô.aU.n.f.A.k.s.dZ.2.m.p.t.oU.v.@.ô.D.@.l.eI.z.i.d.A.g/

Setting x to be /D/ and y to be /@/, then:

BTP(/D@/)= p(/D@/)
p(/ @/)

Here, p(/D@/) represents the probability (relative frequency) that any two adjacent segments
(i.e. any diphone) are /D@/ and p(/ @/) represents the probability that any given diphone ends with
/@/ in the corpus. There are 31 total diphones, of which 2 are /D@/, and 3 end with /@/. Therefore:
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BTP= p(/D@/)
p(/ @/)

=
( 2

31 )

( 3
31 )
≈ 0.667.

Similarly, one could calculate MI(/D@/) as:

MI(/D@/)= log2
p(/D@/)

p(/D /)p(/ @/)
= log2

( 2
31 )

( 2
31 )

3
31
≈ 3.37

An important characteristic of these metrics is that they rely solely on the relative frequencies of
the units in the corpus. Since frequency exists independently of location, every repeated transition
(e.g. /D@/ in (1)) has one value per metric. Further, the metric values remain the same regardless of
whether the transition occurs only within-word, only between-words or both. While this fact neces-
sarily leads to the confusability of whether a transition demarcates words or not, there is often one
transition type which occurs much more frequently than the other1, enabling correct segmentation
more often than incorrect segmentation (Cairns et al. 1997).

4 Methodology

4.1 Pre-processing corpora

To ensure the same method for calculating FTP, BTP and MI could be used with all languages, the
format of all corpora was unified. To do this, each corpus was imported into the recently available
Phonological CorpusTools (PCT) (Hall et al. 2015) using its Import Spontaneous Speech Corpus
function. The function has several options to handle importing a variety of data files: the TARIC
and HKCC corpora were imported as running text files (.txt), the CSJ was imported from Praat
TextGrids (Boersma and Weenink 2014) and the BCCS was imported using PCT’s default Import
BCCS option. After import, PCT creates a standardized .corpus file which can be interacted with
either through PCT’s graphical interface, or through command-line functions. This unified format
includes indices corresponding to discourses, speakers, sentences, words, transcriptions along with
a variety of others. The format was necessary to ensure the same Python script could be used for
each corpus. Words were taken as-are from each corpus as delimited by whitespace; the whitespace
corresponds to breaks between orthographic words.

4.2 Extracting transitions

Diphone and triphone transitions were extracted from each corpus. Diphones were chosen following
the lead of Daland (2009) who argues for their significance in word segmentation (e.g. /pd/ virtually
never occurs within-word and thus is a good indicator of a between-word transition). Triphones
were chosen following common practice in speech processing and recognition (e.g. Glass 2003)
and necessarily require two variations because between-word transitions could be either between
the first two segments and the third (2↔1) or the first segment and the following two (1↔2). This
distinction directly affects metric calculations as x and y correspond to monophone or diphone units,
relativized to their occurrences in triphones, depending on condition. For example, in transition
condition triphone[2↔1], p(x) would be the relative frequency of triphones beginning with diphone

1Consider the English word the, where /D@/ occurs within-word, and the sentence I loathe umbrellas, where
/D@/ occurs between-word. Nonetheless, the is much more common, and overall segmentation accuracy
would remain quite high if /D@/ was consistently considered a within-word transition.
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x, and p(y) would be the relative frequency of triphones ending with monophone y. This mismatch
of diphones/monophones results in a wide range of probability values.

To be explicit, it is beneficial to highlight the distinction between transition condition and
transition type. Transition condition refers to the conditions diphone[1↔1], triphone[2↔1], and
triphone[1↔2] as described here. Transition type refers to the distinction between within-word and
between-word transitions. Thus, the separability of transition types is to be analyzed for each of the
three transition conditions.

A Python script was written to extract all diphone and triphone transitions which occurred in
each corpus. Table 2 is an example of a subset of the set of diphone transitions from the CSJ.

Table 2: Segment transitions, their frequency of occurrence between-words (bw) and
within-words (ww), and their corresponding values for each metric. Data are from the CSJ.

Segments are delimited in PCT by periods, thus all diphone transitions are of the type x.y.
Frequency is split into within-word (ww) and between-word (bw) occurrences for later process-
ing (Section 4.3), but, as mentioned previously, all metrics rely on total frequency of the units in
the corpus (i.e. the sum of within-word and between-word raw frequencies). Each metric value
was calculated for every transition using the formulas described in Section 3 and added into their
respective rows.

4.3 Isolating transition types

From the data in Table 2, the distributions of each metric value for each transition type was con-
structed using the raw frequencies of occurrence. If a transition occurred both within-word and
between-words, it contributed to the construction of both transition type distributions. Frequency
was incorporated in the distributions by reduplicating metric values as many times as they occurred
for each type. As an example, the transition [e.r] contributed 6155 corresponding FTP, BTP and
MI values to within-word distributions, but only 1039 of each value to between-word distributions
(for Japanese diphones). Similarly, [iH.o] contributed only to between-word distributions and [k j.i]
contributed only to within-word distributions. The result of this process was the creation of metric
value distributions for each transition type, for each metric.

4.4 Summary of methodology

Four corpora (BCCS, CSJ, HKCC, TARIC) were processed for segment transitions in three transi-
tion conditions (diphone[1↔1], triphone[2↔1], triphone[1↔2]). Three metric values (FTP, BTP,
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MI) were then calculated for all transitions in each of the transition conditions. Distributions of
metric values for each transition type (within-word, between-words) were then constructed by redu-
plicating metric values in accordance with their raw frequencies for each type.

The culmination of this process was 36 (4 languages X 3 transition conditions X 3 metric values)
pairs of within-word and between-word distributions. The following section provides a summary of
the distributions and reports the separability of transition types for each distribution pair.

5 Results

5.1 Summary of distributions

Table 3 provides a summary of the distributions. Due to TP values ranging zero to one, all TP values
are log-scaled. This scaling also ensured a more normal distribution of TP values.

Table 3: Summary of metric distributions for within-word (ww) and between-word (bw)
transitions by mean (µ) and standard deviation (σ ) for each language corpus

English Cantonese Japanese Arabic
bw ww bw ww bw ww bw ww

Diphone[1↔1] FTP µ = -3.531 -2.765 -2.871 -2.037 -3.141 -1.906 -2.94 -2.278
σ = 1.027 1.006 0.815 0.996 1.106 1.222 0.990 0.862

BTP µ = -3.529 -2.766 -2.994 -1.970 -2.448 -2.207 -2.802 -2.325
σ = 1.079 0.995 0.921 1.036 1.135 0.990 0.906 0.837

MI µ = 0.044 0.753 0.334 1.255 0.419 1.126 -0.011 0.459
σ = 0.802 0.798 0.677 0.834 0.887 0.964 0.791 0.720

Triphone[2↔1] FTP µ = -3.348 -2.236 -2.739 -1.577 -2.893 -1.897 -2.749 -1.502
σ = 1.083 1.211 0.860 1.100 1.281 1.209 1.157 1.048

BTP µ = -6.092 -5.017 -4.731 -3.778 -4.386 -4.109 -4.856 -3.812
σ = 1.459 1.575 1.353 1.466 1.562 1.426 1.290 1.301

MI µ = 0.227 1.341 0.739 2.566 0.667 1.325 0.181 1.267
σ = 0.953 1.219 0.746 1.014 1.117 1.106 1.083 1.117

Triphone[1↔ 2] FTP µ = -6.027 -5.015 -4.775 -3.761 -4.464 -4.093 -4.823 -3.751
σ = 1.393 1.576 1.311 1.471 1.663 1.428 1.466 1.314

BTP µ = -3.326 -2.219 -2.850 -1.733 -2.262 -1.924 -2.536 -1.511
σ = 1.095 1.231 0.919 1.076 1.159 1.051 1.143 1.074

MI µ = 0.247 1.360 0.478 1.562 0.605 1.313 0.255 1.319
σ = 0.925 1.234 0.746 0.988 1.010 1.086 1.092 1.137

Comparing metric means, we see that within-word transitions are more probable, or share more
information, than between-word transitions without exception. This provides empirical support of
the generalization originally stated by Saffran et al. (1996a). Further, the cross-linguistic occurrence
of this pattern, in spite of the variablility of languages, supports the notion that separability of
transition types could function as a means of segmenting speech. However, distributions do overlap
(seen through incorporating standard deviation), meaning this information alone does not allow
perfect segmentation. This imperfect segmenting provides empirical support of authors such as
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Johnson and Tyler (2010) who have questioned the effectiveness of statistical learning based speech
segmentation with natural language.

Each pair of distributions is also visualizable via histograms and corresponding density plots.
Figure 2 demonstrates the separability of between-word and within-word transitions for each metric
in the triphone[2↔1] transition condition for the HKCC. This graph was chosen due to particularly
clear separability of transition types. TP values closer to zero correspond to higher probabilities due
to the log-scaling. Visual inspection of these graphs also corroborates the notion that within-word
transitions have higher TP values and share more information.

Figure 2: Histogram and density plot comparisons of metric distributions for triphone[2↔1]
transitions in the HKCC. The less overlap of distributions, the more separability of within-word

and between-word transition types.

5.2 Significance tests and effect sizes

To assess whether metric distributions allow for significant separability of transition type, a two-
sample t-test on the distributions was performed. Prior to this, a two-sample F-test for equal vari-
ance was performed to determine if Student’s t-test for equal variance or Welch’s t-test for unequal
variance was appropriate. Finally, to compare the effect size of separability that each metric affords,
Cohen’s d was calculated. The results are reported in Table 4.
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Table 4: Summary of within-word and between-word separability by metric distributions. All
t-tests were significant (p < 0.001); thus p-values are not reported. The highest average for each

language is highlighted in blue.

Transition Condition
Diphone[1↔1] Triphone[2↔1] Triphone[1↔2]

t-value Cohen’s d t-value Cohen’s d t-value Cohen’s d µ(d)

English: FTP 325.91 0.712 373.23 0.869 262.70 0.643 0.741
BTP 315.25 0.703 273.02 0.667 366.53 0.856 0.742
MI 384.11 0.818 393.71 0.904 395.06 0.905 0.876

Cantonese: FTP 268.62 0.819 290.19 1.017 179.70 0.685 0.840
BTP 302.96 0.922 166.82 0.640 275.54 0.976 0.846
MI 356.47 1.027 341.87 1.143 305.05 1.055 1.075

Japanese: FTP 600.57 0.938 402.63 0.747 119.78 0.241 0.642
BTP 122.47 0.231 93.17 0.186 153.21 0.304 0.240
MI 431.61 0.710 299.23 0.569 343.60 0.638 0.639

Arabic: FTP 159.82 0.704 244.14 1.012 166.03 0.737 0.818
BTP 124.10 0.542 177.42 0.753 200.96 0.856 0.717
MI 140.59 0.613 218.16 0.892 211.13 0.866 0.790

µ(d) 0.728 0.783 0.730

All F-tests had p< .006 and t-tests had p< 0.001; thus individual p-values are not reported. Ev-
ery distribution comparison failed the F-test for equal variance; therefore, the subsequent test used
to check for reliably different means was Welch’s T-Test which is more conservative and assumes
unequal variance. The uniformity of unequal variance here is not particularly surprising given there
are unequal numbers of within-word and between-word transitions in language. The reliable sepa-
rability of metric means was confirmed for all cases by the t-tests. To gauge the overall separability
afforded by each metric, Cohen’s d was calculated as a measure of effect size. A Cohen’s d > 0.8
is regularly considered a large effect size with increasing values interpretable as more separability
afforded. This correspondence between a larger Cohen’s d and more separability is clearly seen in
the visualization of distributions for diphone transitions in the CSJ, shown in Figure 3.

Concretely, Figure 3 shows that, of the diphone transition condition in Japanese, FTP provides
the most separability of within-word and between-word transition types and BTP provides the least.
Similarly, looking back to Figure 2, MI affords the most separability of transition type which is con-
firmed by the largest Cohen’s d in the Cantonese triphone[2↔1] transition condition. The density
plots for all languages are provided on the final page of this paper for the readers visual inspection.
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Figure 3: Density plot comparisons and Cohen’s d values of metric distributions for
diphone[1↔1] transitions in the CSJ. The less overlap of distributions, the more separability of

transition types and a higher Cohen’s d value.

5.3 Results discussion

Comparing Cohen’s d values across metrics and transition conditions facilitates the identification
of both cross-linguistic and language-specific patterns. In Table 4, we see that MI, on average,
provides the most separability of transition types across all conditions and all languages (MI µ =
0.845; FTP µ = 0.760; BTP µ = 0.636). Mutual Information, however, is not consistently the most
informative language-by-language. For English and Cantonese, MI affords the most separability;
for Japanese and Arabic, FTP affords the most separability. This lines up with the prediction that the
former two languages would pattern together and the latter two would pattern together given their
similar phonemic inventory composition. The fact that MI is the most informative in English also
aligns well with previous corpus research which showed empirically that MI affords better speech
segmentation than other metrics (Swingley 1999).

Considering transition condition now, we see that the triphone[2↔1] condition provides the
most separability of transition types as measured by averaging Cohen’s d across all metrics
(diphone[1↔1] µ = .728; triphone[2↔1] µ = 0.783; triphone[1↔2] µ = 0.730). This patterns
is true for all languages except Japanese, in which diphones provide the most separability. This is
likely a result of the restricted phonotactics in Japanese as compared to the other languages.

There is also a consistent pattern of FTP outperforming BTP in transition condition
triphone[2↔1] and falling behind BTP in transition condition triphone[1↔2]. This is expected
as FTP incorporates diphone frequency in triphone[2↔1] but BTP incorporates only monophone
frequency. This pattern is reversed in the triphone[1↔2] transition condition where BTP outper-
forms FTP. Thus, this is the result of FTP and BTP each having an advantageous transition condition
(triphone[2↔1] and triphone[1↔2], respectively). A comparison of FTP and BTP across languages
shows that their relative informativeness is language-specific. In English, they appear to have simi-
lar informativeness as they have similar values in the diphone[1↔1] condition (FTP d = 0.712, BTP
d = 0.704) and similar values in their respective advantageous condition (FTP d = 0.869, BTP d =
0.857). In Cantonese, BTP appears to be more informative than FTP as seen in the diphone[1↔1]
condition (FTP d = 0.450, BTP d = 1.222) and contrasting values in their respective advantageous
condition (FTP d = 1.057, BTP d = 1.270). In Japanese and Tunisian Arabic, FTP appears to be
more informative than BTP via the same logic.

Comparing languages, we see that Japanese, on average, has the least separability of transition
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types while Cantonese has the most. This is consistent with the predictions that Japanese, as a
morphologically rich language, will have less separability than other languages, and that Cantonese,
as a tone language, will have more. Thus, all three predictions made based on language variability
were confirmed.

6 General discussion

In combination, these results provide strong support that there is statistical information in natural
speech cross-linguistically which could be leveraged for speech segmentation by infants. For all
transition conditions and all metrics, there was significant separability between transition types.
However, it is important to note that the within-word and between-word transitions are not perfectly
separable in any case. This observation is in line with previous research (e.g. Cairns et al. 1997)
and supports the argument that other cues, such as stress patterns, must also be used by infants for
more accurate speech segmentation (e.g. Yang 2004). Nonetheless, the patterns herein suggest that
statistical learning could enable the delineation of words in continuous speech to some extent. That
is to say, provided infants are able to track transitional patterns (as has been assumed by others, e.g.
Daland and Pierrehumbert 2011), they are likely able to accurately identify some words. This is
consistent with the idea that infants first learn to segment a small set words via statistical learning
and then develop other segmentation strategies, such as the use of stress, based on commonalities in
the set of now known words (Mattys et al. 2005; Thiessen and Saffran 2003).

It is important to state that the significance of this work relies on infants developing, or hav-
ing innately, knowledge of speech sounds and possessing a robust statistical learning mechanism
capable of tracking transitions between such sounds on a large-scale. Further, these results were
achieved with perfect word-boundary knowledge. This raises the question of how an infant would
begin to develop distributions analogous to the ones here (see Cairns et al. 1997:for more discussion)
in the first place. Daland and Pierrehumbert (2011) address this question directly by suggesting that
between-word transitions marked with acoustic cues (e.g. pauses between phrases) can be used to
bootstrap other between-word transitions. A combination of their proposal and the current project
may also be fruitful in the future.

As a final thought, the kind of separability found here may also find use in language typology.
These analyses provide another dimension on which to categorize languages and such categorization
may provide insight into other problems in the future.

7 Conclusion

This work investigated the statistical separability of within-word and between-word segment tran-
sitions in four languages. Three metric types (FTP, BTP, MI) that have been reported in the liter-
ature as ways of encapsulating statistical regularities in language were applied to segment transi-
tions resulting in distributions of each metric for each transition type. Three transition conditions
(diphone[1↔1], triphone[2↔1], triphone[1↔2]) were tested in line with previous speech segmen-
tation and speech processing research. Both t-tests and Cohen’s d calculations showed separability
of transition types for all metrics, for all transition conditions and for all languages. Mutual In-
formation was consistently found to be the most informative metric. Further, the triphone[2↔1]
transition condition provided the most separability of transition types. Japanese afforded the least
separability of transition types and Cantonese afforded the most. Finally, English and Cantonese
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patterned similarly and Tunisian Arabic and Japanese patterned similarly in terms of separability
afforded by each metric. This patterning aligned well with each languages phonemic inventory
composition.
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Density Plots

Figure 4: English density plots
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Figure 5: Cantonese density plots
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Figure 6: Japanese density plots
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Figure 7: Tunisian Arabic density plots
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